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PREFACE

This text can be used in a variety of ways. The studedt,
totally unfamiliar with veetor analysis can peruse Chapters (2,
and 4 to gain familiarity with the algebra and caleulus of vectnrs
These chapters cover the ordinary one-scmester COUrse\ in"vector
analysis. Numerous examples in the flelds of." dlﬁerentml
geometry, electricity, mechanies, hydrodynamiegh and elasticity
can be found in Chapters 3, 5, 6, and 7, regpsetively. Those
already aequainted with vector analysis whodeel that they would
like to become better acquainted with th xE:L;\)pl:’m:-jfc-ions of veetors
can rcad the above-mentioned chapbers” with little difficulty:
only a most rudimentary knowledge\of these fields is nceessary
in order that the reader be capab]e of following their confents,
which are fairly complete from*an clementary viewpoint. A
knowledge of these chapter&should enable the reader to further
digest the more cumprehenswe treatises dealing with these sub-
jects, some of which gﬁ‘e listed in the reference section. Tt is
hoped that these ch@gters will give the mathematician a brief
introduction to glementary theoretical physics. Tinally, the
author feels tha.L Cha,pters 8 and 9 deal sufficiently with tensor
analysis and«[{,lemanman geometry to enable the reader to study
the theor§™f relativity with & minimum of effort as far as the
mathe (\103 involved is concerned.

In order to eover such a wide range of topics the treatment has
m'ccsr,arlly been brief. It is hoped, however, that nothing has

\be‘en gacrificed in the way of clearness of ideas. The author has
attempted to be ag rigorous as is possible in a work of this nature.
Numerous examples have been worked out fully in the text,
The teacher who plans on using this book as a text can surely
arrange the topics to suit his needs for a one-, two-, or even three-
semester gourse.

If the book is successful, it i duc in no small measure to the
composite efforts of those men who have invented and who have

¥
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applied the vector and tensor anmalysis. The excellent works
listed in the reference section have been of great aid. Finaily, 1
wish to thank Professor Charles de Prima of the Californin
Institute of Technology for his kind interest in the development
of this text.

Harry Lass
URBaa, Tin.

February, 1950 . {\
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CHAPTER 1
THE ALGEBRA OF VECTORS

1. Definition of a Vector., Our starting point for the definition
of a vector will be the intuitive one encountered in elementary
physics. Any directed line segment will be called a vectot. ™ The
length of the vector will be denoted by the word mgmtude Any
physical element that has magnitude and directionyvand henee
can be represented by a vector, will also be deszgnated as a vector.
In Chap. 8 we will give a more mathematically: ngorous definition
of a vector.

Elementary examples of vectors are dlsﬁiacements, velocities,
forces, accelerations, ete. Physical x;tmeepts, such as speed,
temperature, dJstance and specific gravlty, and arithmetic num-
bers, such as 2, =, etc., are called gealars to distinguish them from
veectors. We note that no dlreotlon is associnted with a scalar.

We shall represent vectors' by
arrows and use boldface type to [&'; i a a a‘,]
indicate that we are spéaking of -
a vector. In orde(.tb distin-
guish between sealars and vec- /
tors, the student”will have to - Fma. 1,
adopt some nofation for describ-
ing a ve(;@}’i-n-writing. The student may choose his mode of
Iepreser(rin‘g a vector from Tig. 1 or may adopt his own notation.

Tolevery vector will be associated a real nonnegative number
eqqa.l to the length of the vector. This number will depend, of

“ourse, on the unit chosen to represent a given class of vectors.
\A vector of length one will be called a unit vector. If & repre-
sents the length of the vector a, we shall write ¢ = lal.
lal = 0, we define a as the zero vector.

2. Equahty of Vectors. Two vectors will be defined to be
equal if, and only if, they are parallel, have the same sense of
direction, and the same magnitude. The starting points of the

vectors are immaterial. It is the direction and magnitude which
1



2 VECTOR AND TENSOR ANALYSIS (Sec. 3

are important. Tqual veetors, however, may produce different
physical cffects, as will be seen later. We write a = b if the
vectors are equal (see Fig, 2).

b Q)

Fre. 2. O\

3. Multiplication by a Scalar, If we mult-iplyﬁ ‘ﬁ'gctor a by a
real number x, we define the product za to.be B new vector
parallel to a whose magnitude has been multiglied by the factor 2.
Thus 2a will be a vector which is twicea8Jong as the vector a

Fie, 3. R Fia. 4,

and which has the sdrhe direction as a (seo Fig. 3). We define
—a as the vector ©htaived from a by reversing its direction (sce

Fig. 4). I\
We note thag ..
P\ z{ya) = (zy)a = 2ya
K¢ @+ y)a =za + ya
\“\ Oa =0 (zero veetor)

to & (see Fig. 5). The vector starting fr A .
; : om the ori i
endmg.a,t the arvow of b i defy; g gin of a and

Weseethata—!—ﬂ=a,acn.difa=b,c=d',then

atc=b+4
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From Euclidean geometry we note that

at+thbh=b+a (1)
@a+b)+e=a+(b+c (2)
z{a + b) = za + zb (3)

(1) is called the commutative law of veetor addition ; (2) 18 called
the associative law of vector addition; (3) is the distributive law
for multiplication by a scalar. The reader should have no,
trouble proving these three results geometrically. \

£
a+h+e '\‘
F1q. B, )

5. Subtraction of Vectors. Given, the two vectors a and b,
we can ask ourselves the following\question: What vector ¢ must
be added to b to give a? Thgvx}'éét-or ¢ is defined to be the vector
a —b. We can obtain the desired result by two methods.
First, construct —b and then add this veetor to 4, or second, let b
and a have a comm @ri}gin and construct the third side of the
triangle. The twg Q&sible dircetions will givea — band b — a
(see Fig. 6). T};{us'é —b=a+ (—h).

o\ N
N\ _
,\\.. J a
o a=-b
NN a-h
...\\: “..‘ a
N/ b

Fra. 6.

6. Linear Functions, Let us consider all vectors in the two-
dimensional Euclidean plane. We choose a basis for this system
of vectors by considering any two nonparallel, nonzero vectors.
Call them a and b.  Any third vector ¢ can be written as a linear
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combination or function of & and b,
€ =za+ yb (4)

The proof of (4) is by construction (see Tig. 7.

Let us now consider the following problem: Let a and b have
& common origin, 0, and let ¢ be any vector starting from O whose
end point lies on the line joining the ends of a and b (seeFig, 8).

——
a Ia

Fre. 7. &N Fre. 8.

™

Let ' divide BA in th“g"r;l,tio x:y where x + y = 1, TIn particu-

lar, if €' is the midépoint of BA, then ¢ = ¥y =31 Now
_ N
T c=o0B4 B
=b + z(a - b)
G =za+ (1 — 2)b
g0 thap.”
A\ |
& : ¢ = ia + yb (5)

{ 3
\“}

Now conversely, assume ¢ = ¥a +yb,z 4y = 1. Then
c=xa+(1—x)b=x(a~b)+b

We now note that ¢ ig 5 veetor that is obtained by adding to b the
vector z(a — b), this latier vector being parallel 1o the vector

a—h. .Th:is_ immediately implies tha the end point of ¢ lieg
on the line Joming A to B. We can Tewrite (5) ag

C—za—yb=0o
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We have proved our first important thecrem. A necessary
and sufficient condition that the end points of any three vectors
with conimon origin be on a straight line is that real constants
I, m, n exist such that

lat+mb4ne=20

l+m+n=0

with 12 + m? - n? = 0. ¢
We shall, however, find (5) more useful for solving prohlems.

Example 1. Let us prove that the medians of a trlangle mc(}t
at a point P which divides each median in the ratio 1: 2.

@)

'\ TFie 9.
\\

Let ABC be the(given triangle and let 4’, B/, ¢’ be the mid-
poinfs. ChooseO anywhere in space and construct the vectors
from O to ABy ¢, A', B, (V, calling them a, b, ¢, a’, b/, ¢/ (see
Fig. 9). \Frbm (5) we have

R\ g "§b + i
N 8
& a1 ®)
(No\w P (the intersection of two of the medians) lies on the line
joining 4 and 4’ and on the line joining B and B’. We shall thus
find it expedient to find a relationship between the four vectors
a, b, a', b’ associated with 4, B, A’, B’. From (8) we eliminate
the vector ¢ and obtain
2" 4+ a=2b+b

Or

3/ + $a = 40 + b (9)
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But from (5), %a’ + %a represents a vector whose origin is at 0
and whose cnd point lies on the line joining 4 to A’ Similarly,
#b” + &b represents a vector whose origin is at O and whoso end
point lies on the line joining B to B’. There can only be ong

vector having both these properties, and this is the vector p = OF,
Hencep = 4a’ + %a = 2b’ & 1b.  Note that P dividos 44" and
BB’ in the ratios 2:1. Had we consgidered the median C({ in
connection with AA4’, we would have obtained that p = $c'<k e,
and this comapletes the proof of the theorem, O\
Ezxample 2. To prove that the diagonsals of g paralclogram
bisect each other. Let ABCD be the parallelogz:a,;f{z‘é’nd O any

L0

A T,

Co %\~
pmut I space, (§13e Tig. 10). The equation d —a =¢ — p
implies that ABCD is a parallelogram. Hence
N\ S/

N atdc=3b4id=p
g0 tl}{v{;}” bisects AC and BD,

SN Problems
a\"4 a

\V 1. Interpret [ [
a
2. Give a geometric proof of (3).
~ 3.a,b,care consecutive vectorg forming a triangle. What
13 the vector sum a + b+ e? Generalize this result for any
closed polygon,

Wi from the center of 5 regular polygon to

its vertices.  From Symmetry considerations show that the vec-
tor sum is zero,
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5. aandbareeonsecutive vectorsof a parallelogram. Express
the diagonal veectors in terms of a and b,

6. a, by ¢, d are consecutive vector sides of a quadrilateral.
Show that a necessary and sufficient condition that the figure be
a parallelogram is that a 4 ¢ = 0 and show that this implies
b+d=20

7. Show graphically that |a! + |b| =z |a +bl. From this
show that |a —b| = |a] — [b].

8. a, b, ¢, d are vectors from O to 4, B, ¢, D. If O

O\
NS ©

N

b—a=2d—c)

show that the intersection point of the two lines _]omlﬁg Y and D
and B and € triscets these lines. i \\

9. a, b, ¢, d are four vectors with a commaif drigin.  Find a
necessary and sufficient condition that therKe‘nd pointg lie in a
plane.

10. What is the vector condition tha‘o\‘thc end points of the
vectors of Prob. 9 form the vertices df a"parallelogram?

11. 8how that the mid-points Qi}%he lines which join the mid-
points of the opposite sides ofva quadrilateral coincide. The
four sides of the quadrilateraldre not necessarily coplanar,

12. S8how that theline wh.it,h'jnins one vertex of a parallelogram
to the mid-point of an epp031te side trisects the diagonal.

13. Aline from a tex of a triangle trisccts the opposite side.
It interseets a mmﬂa\me isguing from another vertex. In what
ratio do these IIQ(_,‘.: Intersect one another?

14. Aline from a vertex of a triangle bisects the opposite side.
Tt is trisccped by a similar line issuing from another vertex. How
does thm}krtter ling intersect the opposite side?

154 bhow that ithe bisectors of a triangle meet in a point.

]Eh. ‘Bhow that if two triangles in space are so situated that the

\Qhree points of intersection of corresponding sides lic on a line,
then the lines joining the corresponding vertices pass through a
common point, and conversely. This 18 Desargues’s theorem.

17. b = (sin f)a is a variable véctor which always remains

b
parallel to the fixed veetor a. What is z_if? Explain geomet-~

rically the meaning of Et



and 2 axes, respectively. The vectors i,
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18. Let vy be the velocity of 4 relative to B and let ¥z he the
velocity of B relative to . What is the velocity of A relative
to C? Of C relative to A?  Are these results obvious?

19. Let a, b be constant vectors and let ¢ be defined by the
equation

¢ = (cos t)a 4 (sin £)b
When is ¢ parallel to a? Parallel to b? Can ¢ ever be parallcl

di®

., de d%c a
to a + b? Perpendicular {0 a + b? Find is — If\“&and b
A\

are unlt orthogonal vectors with eommon origin, dedcribe the
positions of ¢ and show that ¢ is perpendicular 115 @1

20, If a and b are-not parallel, show that ma\ + nb = ka + jb
implies m = k, n = 7 O

21. Theorem of Ceva. A necessary andsufficient condition that
the lines which join three points, o /on each side of g triangle,
to the opposite vertices be concuizént, is that the produet of the
algebraie ratios in which the thrée'points divide the sides he —1.

22. Theorem of M. enelaus, WThree points, one on each side of o,
triangle ABC, are collingae if and only if the product of the

algebraic ratios in whish they divide the sides BC, CA, AB is
unity. ~\

This is the ;\:urih'nary Space encountered by students of analytic
geometry @hd the caleulus. We choose a right-handed coordi.
nate sygtem.  If we rotate the 2 axis into the y axis, a right-hand
serewwill advance along the positive 2 axig,

We'let §, j, k be the three unit vectors along the positive LR

jy k form a very simple
g sional Euclidean space.
From Fig. 11 we observe that

T=ai+yf+ 2k (10)

¥ 2 are called the components of the vector r.
reprt?sent the projections of the vector r on the
I'1s called the position veetor of the point P



SEec. 7] I'HE ALGEBRA OF VECTORS 9

and will be used quite frequently in what follows. The most gen-
eral space-time vector that we shall encounter will be of the form

u = u(z, Yz t) = a(x, Y, & DL+ ﬁ(xr ¥ 5 i
+ ¥z, y, 2, Dk (A1)
It is of the utmost importance that the student understand the

meaning of (11). To be more specific, let us consider a fluid in
motion. At any time ¢ the particle which happens to be at the

Z N o
JL ’\“\
NS ©
Plzy2t \.7
“\
| O
RS\
r H «’
N
A
i a\
k | N
J
-3
~ °
f \\\ v‘:. »
\\. N
2 \{ +7)
L
vl | 28 \\ //
N\ > V4
Ve \}/
S p
N\ ¥
'.\'.5"
T O
“\”\ Fre. 11.

point P(a:s b z) will have a velocity which depends on the coordi-
nates .3;{ ¥, z and on the time f. As time goes om, various particles
rixcr&at Pz, y, ) and have the velocities u{z, ¥, 2, £) with com-
nts along the z, ¥, 2 axes given by a(z, y, t) Blx, y, 2, 8,

vz, ¥, 2, 1)

Whenever we have a vector of the type (11), we say that we
have a vector field. An elementary example would be the veetor
u =9y — zj. This vector field is t-imc—independent and so is
called a steady field. At the point P(1, —2, 3) it has the value
—2i —j. Another example would be 1 = sze‘l — ayzij + bak.
We shall have more to say about this type of vector in later
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chapters and will, for the present, be interested only in constant
veetors (unform fields).

A moment’s reflection shows that if a = a.i 4 azj 4 agk,
b = bid + b.j + bsk, then

a + b = (a]_ "I" bl)i + (a.g —|" bz)j + (as + bs)k (12)
28 + yb = (was -+ yboi + (zay + ybo)j + (zaz + yha )k

8. Scalar, or Dot, Product. We define the sealar or dot Prod-
uet of two vectors by the identity A
a-b = |a||b cos o \ O (13)

-\
NN

where 6 is the angle between the two vectors Hen drawn from a
common origin. It makes no differernce whether we choose 8 or
—fsince cos 8 = cos (—#). This defini fah of the scalar product
arose in physics and will play a domifaht role in the develap-
ment of the text. ~N\

O\ Te. 12,
F’Q~ (13) wo at once verify that
"\
N\ a-b="b.a (14)
~O° a-a=laft=ga (15)

NS Hais perpendicular to b, then

a'b=0 (16)

However,ifa b = 0, then either (1) a = 9 (2)b =0,0r (3 ais
perpendicular o b,

Now a-bis equal to the

projection of a onto b multipl;
the length of b (see Fig. 12) mitiplied by

2+b = (proj a)s [b| = (proj b, [o] @17
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Wilh this in mind we proceed to prove the digtributive law, which
siates that

a-{(b+c)=a-b+a-c (18)

From Fig. 13 it is apparent that

a*(b+¢) = [proj (b + o)l 4] o
(proj bl §a| + (proj ¢« |a[

a‘b-+a-c ¢\

1l

I

Fra, 13, AN
‘\‘

since the projection of the sum is fhévsum of the projections.

Tet the reader now prove that  § "

@+b)-c+d =ac+a-d+bctb-d

Fzample 3. To provedthat the median to the base of an isos-
celes triangle is perpe\fl;aicular to the base (sce Fig. 14). From
{B) we see that
O m = a + $b

so that .‘{\'/:“'
::\;.j m:{(b—a)=4b—a% =90
A&
\§ A M B
oY

0O
Fia. 14.

which proves that O} is perpendicular to AB.
Ezample 4. To prove that an angle inscribed in a semicirele
ig a right angle (see Fig. 15).



12 VECTORE AND TENSOR ANALYSIS {Szc. §

BC=a+c¢
Al =¢c—1a

BC AC=(a+¢c)-(c —a)
=¢t—a>=90

so that X BCA is a right angle.

™

< Bzample 5. Cosine Law gf}‘?"%ﬁgmometry.

c =B —a
Cr&=(b—a). (b — a)
'w\}\ =b2+a2__,2a,b

Fre. 16.
so that
: 33=b2+d3-2abcose
JEmmpEeﬁ
i=jj=k.k=g
Irj=jk=k.i=g
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Henee if a = a4 + azj + a:k, b = bid + bsj + bak, then

a-bh = a1b1 + {Igbg + asbs (19)

F_ormula (19} ig of Lthe utmost importance. Noticethat0-a = 0.
- HBzample 7. Cauchy's Inequality

(- b)(a-b) = [a]’[b]? cos? 6 < [a]b|*

g0 that from (19) o
(G1b1 + ashe + asbs)? £ (a1® + @2 + a2 (b1 + by + b‘?)
In general : (~~f;.
il taba < (i oY (2 b 2)* 2 @

Example 8. Let i’ be a unit vector ma,k nganglcs a, 8, ¥ with
the z, ¥, 2 axes. The projections of 1\011 the =, y, z axes are

X

cos e, 008 3, cos v, so that P\ .

i waal—i—ws,ﬁ]—l—cos-yk
= pii -+ gu +~r1k (21)

Notice that p + ¢ + 5’ =" 1. Py, qu, 71 are called the direc-
tion ecosines of the u,c{bl i, Bimilarly, let 7 and k' be unit
vectors with d:lrect@msmes P, G2, 72 and ps, g, rs. Thus

JI

O T = pd g ok
PN k' = pii + g5§j + 73k (22)

»

We also i,n{jsése the condition that i, ', k" be mutually orthogenal,
so thasthe &/, i, 2/ axes form a coordinate system similar to the
2y —sgoordinate system with common origin O (S(_‘,C Fig. 17).
WiVe have r =1 so_ that 2+ ¥ 4 2k = 21 + ¢j 4+ 2K,
\Where x, ¥, z are the coordinates of a point I” as measured in the
z-y-2 coordinate system and z/, ¥, &/ arc the coordinates of the
same point £ ag measured in the z'-y'-z" coordinate system.
Making use of (21) and (22) and equating components, we find
that
r = pw’ -+ py + pat
= qx’ -+ gy’ + o2’ (23)
=ri’ + rof + 72’

w2

2
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We now find it more convenient to rename the z-y-z coordinate
system. Let x = 2, y = 22, z = 2% where the superzeripts do
not designate powers but are just labels which enable us to differ-
cntiate between the various axes, Similarly, let 2’ = 7, ¢ = z2,

) A
z' Y
Y
\
3 :"\
e
7\ ¥
O
N
>~

s-’i\ Fia. 17.

g =z, I?T,(ﬁif)let @g* represent the cosine of the angle between
the z= and % axes. We can write (23) as
' M o

N/

3
',{\ L = Z aﬁafﬁj o = 1, 2, 3 (24)
#=1

T,
L\ 3

*By making use of the faet that ¥+ § = - &' = 1’ » =0 we
/ can prove that ’

3
Fe = E Ag"_’x'ﬂ, a =1, 2,8 (25)
=1

where Ag“' = al. We leave this as an exercise for the reader.
Let us notice that differentiating (24} yields

de

gze & & 0e=1,223 (26
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Ezample 9. The vector a = a'i 4 ¢% + ¢’k may be repre-
sented by the number triple (a!, a?, ¢*). Hence, without appeal-
ing to geomeiry we could develop an algebraic theory of vectors.
If b = (b, b% b9, then a 4 b is defined by the number triple
(&' + b, a2 + b7 a® + b)), and za = z(a!, a?, ?) is defined by the
number triple (zal, za?, ze®). From this the reader can prove
that

(a!, a2, a*) = a'(1, 0, 0) + ¢*(0, 1, 0) 4 &*(0, 0, 1)
The triples (1, 0, 0), (0, 1, 0), (0, 0, 1) form a basis for our Lifitar

vector space, tha,t is, the space of number triples. We note that
the determinant formed from these triples, namely, .\

10 0 K7,
01 0/=1 %)
00 1

\.

does not vanish, Any three triples who determmant does not
vanish can be used to form a basis. Sheb the rcader prove this
result. We can define the scalar . pmduct (inner product) of
two triples by the law (a-b) = a‘lbl -+ a®? 4 a%*

3. Applications of the Scalar Product to Space Geometry

{¢) We define a plane ag the locus of lines passing through a
fixed point perpendicularito a fixed direction. Let the fixed
point be Polzo, %o, o) £0d let the fixed direction be given by the
vector N = Ai 4 Bj Ck. Letr be the position veector to any

point Pz, 4, ) Q’l”l:ﬁilc plane (Fig. 18). Now PoP = r — rois per-
pendicular t}o\N’so that
O @ -1 i+ Bj+ (k) =0
or 8
W 20)i + (v — y0)j + (& — 2kl - (4i + Bj + Cl) = 0
Send
Al —20) + Bly —9o) +Clz—2)) = 0 (27)
This is the equation of the plane. The point Pu{xo, ¥, 20) 0bVi-
ously lies in the plane sinee its coordinates satisfy (27). Equa-
tion (27} iz lincar in =, ¥, 2.
(b) Consider the surface Az -+ By 4+ €2 + D = 0. Let P(z,,
Ys, 20) be any point on the surface. Of necessity,

Azy+ Byo + Czo + D = 0.
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Subtracting we have

A = 20) + Bly — y0) +- Clz — 20) = 0 (28)
Now consider the two vectors Ai+ Bj 4+ Ck and

(= z)i+ @ — yo)j + (z — zo)k

z

A\
x ¢ \J
Q Fie. 18,
Equation {2§)’ shows that these two v

ectors are perpendicular.,
Ck is normal to the sur-
5 a plane.

Hence the)constant veotor Ai + Bj +
1k

face af @very point 5o that the surface i

Fra, 19

(¢) Distance from a poing 10 a plane,
plane be A4 + By + ¢ + D=y, and 1

Let the equation of the
in space. We wish 1o determine the g

€t P(¢, 1, ) be any point
hortest distance from P
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to the plane. Choose any point P, Iying in the plane. It is
apparent that the shortest dis- 2
tance will be the projection of :
PP on N, where N is a unit
vector normal to the plane (see
Fig. 19). Now

d =TP0P-N|

_|de+By+cc+D
@B oy

(29)

where uge has been made of the
fact that J \“:
Azs + Bys + C2y 4+ D = 0. 0 \.20.
(d) Eguation of a straight line throughz’f}?\i)oint Poliro, yo, 20)
parallel to the vector T =l + mj —f—‘?ﬂ:g;\ From Fig. 20 it is

z N

¥ 0', Y

r . N

."\
o
t\.J
R\
a3
t“"’ ..; ’_,..--""-_H__—_‘""""-.
"N T Py lxg 3, 2 T
) £ D \,\
y '\ml
p
) >
w4 Iy /
Q
RN
.O’\‘%
l“\‘ w4 r
AV 0 —y

Fre. 21.
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apparent that r — r; is parallel to T so that r — r, = AT,
—w <A< Fw

Hence (z — 20)i + (y — yo)i + (2 — zo¥k = A (li + mj - nk}, so
that equating components yields

T _ Y Y _ 2z A (30
{ m 7
L\
By allowing X to vary from — « to + ® we generate-€very point
on the line. g
{e) Equation of a sphere with center at Pylz,, yo,fzu)‘ia-nd radius .
In Fig. 21 obviously (r — 1,) - (t — 1) = ailop

@—mﬁ+w—ym+{gjaﬁ=ﬁ

Problem!%\ -
1. Add and subtract the ve(;t-zofs a=2—3j+ 5k,

b =39 + 2% + 2k

Show that the vectorg.are i)erpendicular.

2. Find the cosie of the angle betwoen the two vectors
a=ﬁ—$+k@ﬁb=m~j-%.
3. cis nphnal to a and b, show that ¢ is norma] toa + b,
a2 —b. E
4. Leta%nd b be unit vectors in the z-y plane making angles
@ an@\:?\"{vit-h the z axis, Show that a = cos & i + sin @ j,
b. :N% 814 ¢in 8§, and prove that
“\‘f'f' €08 (@ ~ 8) = ¢os « cos B+ ¢in a sin 8

&w\\

5. Find the equation of the cone whose generators make an
angle of 30° with the unit veetor which, makes equal angles with
the 2, ¥, and z axes, | .

6. The position veetors of the foci of an ellipse are ¢ and —¢,
and the length of the major axis is 2a. Show that the equation
of the ellipse is ¢ — a*(e? - e + (¢ - Nt =,
8 Find the shortest, distance from the point A(1, 0, 1) to the
line through the points B(2, 3, 4) and C(~ 1,1, —2).



*
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9. Leta=2i —j+ Ik b=1i—23 -5k Find a vector ¢
g0 that a, b, ¢ form the sides of a right triangle.

10. Lot r be the position vector of a point P, y,2), and let a
be a constant vector. Interpret the equation {r — a)+.a = 0.

11. Givena =21 —3j+k, b = 3j — 4k, find the projection
of a along b.

12. Show that the line joining the end points of the vectors
a=2—j—k b= —i4 3j — k with common origin at O is
parallel to the -y plane, and find its length. O

13. Prove that the sum of the squares of the diagonals ofg .
parallelogram is equal to the sum of the squares of its sideg, { ™

14. Let a = ay + a, where a,-b = 0 and a, Is parallel te b.
Show that a, = M b,a, =a — M b “\ 3

[bf {b] R&S

15. Derive (25). G

16. Verily (26). O

17. Find a vector perpendicular to the veetorsa =1 — j + k,
b =2 +3j — k. )

18. Let & = f(i)i + g(1)j -+ (DK, and define

da e , ,;. )

5 =i+ g+ VoK
. da dla] &
Show that T |a] qf{"’}\

19. Find the angle bét@vé'én theplane Az + By +C2 + D =0
and the plane ax + b+ 2 + 4 = 0.

20. a, b, ¢ are’ ¢bplanar. If a is not parallel to b, show that

9N

c-a a-hbh a-a ¢+a

O e beb[® T lap cob|®
,\\c:

) a-a a-b

A a-b b-bJ

34/ For the ase, A« defined by (24) and (25), show that
3
D, adgr = 5
=1

wherea,g;“: IJ'ICE:.S, 53“=0ifa = 8,
22. If BY, B, B are the components of a vector B, that is,
B = Bl + B% + B% (sce Example 8 in regard to the super-
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seripts)}, sht'}w that for a rotation of axes tlge components of tha
vector B become (BY, B2, B¥) where Br — 2 as"Bf o = 1,23,
]

. =1
and B = B + B% + B%’. Read Example 8 carcfully.
23. Bhow that for a rotation of axes,

BiCt L B0t B = Bt 4L Bl + B30

This shows the invariance of the scalar product for rotations of
axes. 'The invariance here refers to both the numeriga] tnvazi-

ance of the scalar product and the formal invariange\™

3 a A gt
E Be(le = 2 Be(le “‘( N
a=1 =1 ¥ ~\"

24. Prove the statements made in Exaniple 9.

25. Generalize the statements of Eg{{@ple 9 for n-tuples

@, @, . )

10. Vector, or Cross, Produét.” Given any two nonparallel
vectors a and b, we may eofdgtruct a third vector ¢ as follows:
\\ When translated so that they
have a common origin, the
¥wo vectors a, b form two
sides of & parallelogram. We
define ¢ to be perpendicular
to the plane of this parallelo-
gram wilth magnitude equal
to the area of the parallelo-
- gram. We choose that nor-
mal obtained by the motion
of a right-hand screw when a -
18 rotated into b (angle of ro- -
A cross is placed between the
Or ¢ = a x b, The vector ¢
product of a and b and is given by

A " Fia. 22.
)y tation less than 180°) (see Fig. 22).
veetors & and b to denote the vect

18 called the Cross, or vector,

—_—
¢c=axb=a|bl singE 3D

The area of the parallclogram is

where |Ef = 1.

4 = |allb| sin 8
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The eross product will oceur frequently in mechanics and elec-
tricity, but for the present we diseuss its algebraic behavior. It
is obvious that a xb = —b x a, so that vector multiplication
is not commutative, If a and b arve parallel, a xb =0, In
particular, a xa = 0.

11, The Distributive Law for the Vector Product. We desire
toprovethata x (b +¢) =a xb +a xe. Let

u=ax{h+c¢)—axb—axc

and form the scalar product of this vector with an arblbmry’

vector v. 'We obtain N\

N/

v-u=v-[ax(b +e)]—v-{axb) —v- (a xc%
In Bec. 18 we shall show that a- (b x¢) = {(a x h}\‘c Hence

veu={vxa)-(b+c)— (vxa): bu(an) 3
=(vxa) b+ (vxa)c— (vxa): b\ (vxa):c=0

This implies either that u = 0 or that ¥ 1} perpendicular to u.
Bince v is arbitrary, we can choose 1t ot perpendicular to u.
Hence u = 0 and _ o

L

LY

e
TN

a x{b-+ c)%’hxb-ﬁ-axc (32)

This proof is by Professcg’f"}[organ Ward of the California Insti-
tute of Technology. %\~

12. Examples of the Vector Product

E:rample 10 \*"

N ixi=jxj=kxk=0
\\iXJ—k ixk=1i, kxi=j
For th.Q' veetorq a=ad+aj+ ak, b==bi+ b+ bk we
obta,m A xb = (ahs — asby)i + (aebs — aibs)j + (a:bs — asb)k
; making use of the distributive law of Sec. 11. Symbolically

we have

iy K|
axb={a a a (33)
b1 by bs

“where (33) is to be expanded by the ordinary method of determi-
nants.

N
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% Eaample 11, " a = 2i — 3j + 8k b = —i + 2j — 3k, so that

i j k - "
axb=| 2 -3 5= -it{j+k
-1 2 -3 -

J Ezample 12, Sine low of trigonometry

c=b—a N\
cxc=cx(b—a) A o
0=cxb—cxa \\‘\
or ',\';
¢xa=cxb N

\ \, Fra, 23,

Ho“;e\vgi‘: if two vectors are equal,
that\/
™ ;\%

their magnitudes are equal so
l¢||a] sin g = le]|b] sin «

a

4

—

sifa  sing8  gin ¥

b -—

= Example 13.  Rotation of a Particle.
rotating about a fixed line J, with angular speed o, We assume
that its distance from 7, remains constant. Let us define the
_a,ngu]ar velocity of the particle as the vector &, whose direction
is along L and whose length is ». We choose the direction of o
m the usual senge of 5 right-hand screw advance (see Fig. 24).

Assume that a particle is
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Tt is our aim fo prove that the velocity vector v can be represented
by @ x1, where r is the position vector of P from any origin
taken on the line L. Let the reader show that v and o x r arc
parallel. Now o x 1] = wa = speed of
P, so that

Y=0xT {34)

13. The Triple Scalar Product. Let
us consider the scalar a- (b x¢). This
scular represents the volume of the par-
allelepiped formed by the coterminous
sides a, b, ¢, since

a- (b xc) = |a||bl|c| sin ¢ cos
= hA = volume (35)

i \ > Fia. 24
A being the area of the parallelogram

with sides b and e, the altitude of the\paralleleplped being
denoted by A (see Fig. 25).

."\Q’ . .
as(b' x ¢) = (ad + @zj + azk) - [ b1 by by
\ (] £z €3

al(bgca - 6%62) + ag(bacl - 5163) + ag(blcz - bzcl)

|

s0 that,

. . . 051 iy : -afg oo
a-(bxe)=1|b b b, . (36)

55} o C3
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Notice that a- (b x¢) = (a x b) * ¢ since both terms represent
the volume of the parallelepiped. It is also very casy to show
that the determinant of (36) represents (a xb)+c. Weusually
write a - (b x¢) = (abc) since there can be no confusion as to
where the dot and cross belong. 'We note that

(abc) = (cab) = (bca)

and that (abc) = —(bac) = —(cha) = —(ach), These Hhellts
follow from elementary theorems on determinants. Wg:\a{e thus
allowed to interchange the dot and the cross when werkine with
the triple scalar product, This result was used to prove (32).
If the three vectors a, b, ¢ are coplanar, no volun,fe'é‘xists, and we
at once have (abc) = 0, TIn particular, if two 6f ‘he three vectors
are equal, the friple scalar product vanishoge )

14. The Triple Vector Product. T]:u{ triple vector product
a x (b x ¢) plays an important role in fhe aevelopment of vector
analysis and in its applications. ~The result iz a vector since
i is the vector product of a and\(b x ¢}, This vector ig there-
fore perpendicular 1o b x ¢ so.that it lies in the plane of b and c.
I b is not parallel to G 8% (b x¢) = 2b + ye, from Sec. .

Now dot both sides withita and obtain z@a-b) 4+ yla-c) = 0,

since a2+[a x (b xc ‘"=0. Hene z_ . ¥ = ;

[ ( },I\ ence ) @ b) A, where
X 18 a scalar, so that ' ) '

OrFx (b xe) =N@a-o)b — (aibe] 37)

A% -
In the s‘pqz;al case when b = 2, we can quickly prove that \ = 1.
We {%(3 ) with ¢ and obtain _
.':.‘\ ¢rlax(axe)=2Na-cr— a%?]
oL

—{a xc)? = M- c)2 — a%c?]
by an interchange of dog and eross. Henge

—a%e? sin? § = Mac? cos? g - a%?) = —Ma%?gint g
oo that ) = 1. Mot a x & %) < (a T gja — "

. ence a x (a - ={a- — (a-aj. From
1t&us It immediately follgws that (a « b) xb =(g- bYb 1 (b-Dbla
Now we prove that A =1 for 1k . .
i oo Obt&i}l A= © general case. We dot {37)
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M{a+c}b-b) — (@ b)c-b)]=b-[a x (b x¢)}
= —f(axb) (bxec
= —[(a xb) xb]-c

Now (a xb) xb = {a-b)b — b2, so that
—[(a xb) xb] ¢ = b%a-¢) — (a-b)b-c)

implying A = 1, Thus

ax(bxc)=(ac)b— (a b (:%E{}\~

e leave it to the reader to show that
@xb)xc=(a-cb~(b-ca D

Notice that a x (b x¢) = (2 xb) xc. If b ig\pérallel to ¢,
(38) reduces to the identity 0 = 0, so that (38} Aoids for any three
veetors,  The expansion (38) of a x (b x c)\xs* often referred to
as the rule of the middle factor. P\

More complicated products are sirn,phﬁed by use of the triple
products. For example, we can cx_pand (a xb) x(c xd) by
considering (a x b} a8 a single wectur and applying (38),

{a xb) x(c xd) »(axb dle — (a xb+c)d

') (abd)c — (abc)d (39)
Also
(a xb)-(c xd) =a-b x{cxd)
NO7 =a-b-de — -4
\ (b dia+c) — (b-cja-d) (40}

15. App \atmns to the Spherical Trigonometry, Consider the
sphericul, trlangle ABC (sides are ares of great circles) (sce Fig.
- 26). Det the sphere be of radius 1. Now from (40) we see that

O (@ xb) (@ x¢) = (b+¢) — (a+b)a-c)

The angle between a xb and a2 x ¢ is the same ag the dihedral
angle A4 between the planes 0AC and OAB, since a x b is per-
pendicular to the plane of OAB and since a x ¢ is perpendiculur
to the plane of 0AC. Henece

gin ¥ gin 3 cos A = cos @ — co3 ¥ cos 3.
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Pm’bie:ns
L. Show by two methqlié“:c.hat the vectors a = 9f — 3j — k,
b = —6i + 9j + 3k are parallel.

2. Find a unit veélor perpendicular to the vec
O

tors

N a=ji—-j4k
b=i4j—k
N© .
3. Arparticle has an angulay speed of 2 radians per second, and
itg %s\,of rotation passes through the points PO, 1, 2),
&

™

Y Q(l, 3} __2)
ty of the particle Wﬁen it is
R(3, 8, 4).

4. Tind the cquation of the plane passing through the cnd
points of the vectors a = g,

€= o -+ eof + 5k, all thre

5. Show that (a x b) x (¢ xd) = (acd)b — (bcdja.
6. Prove that d (@ xb)-(a xc) =

7: If a—}-b+c=0, brove that a xb = xe = xa,
and interpret this result trigunometrically.

loeated at the point
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8. Four vectors have directions which are outward perpen-
diculars to the four faces of a tetrahedron, and their lengths are
equal to the areas of the faces they represent. Show that the
sum of these four vectors is the zero vector.

9. Prove that (a xb)+ (b x¢) x (¢ xa) = {(abe)?,

10. If a, b, ¢ are not coplanar, show that

_ (dbc) (adc) (abd)
= {abe) at {abc) b {abc) ¢

for any veetor d.

11. If a, b, ¢ are not coplanar, show that ’,\’
(e- d) (a-d) (b d)
_ —— b < X
@be) * ¥ T (abey P ¥t ) © - R
\ N

for any vector d.
12, Prove that

ax(bxc)+bxicxa)+cx@akh =0

13. The four vectors a, b, ¢, d are{coplanar. Show that
{a xb) x(c xd) = 0.
14. By considering the expansionder (a x b) x (a x ¢), derive
a spherical trigonometric identitys(see See. 15).
15. Show that Ve )
(@ xb) - (¢ xd) x (e(RT) = (abd)(cel) — (abc)(def)
X = (abe)(fcd) — (abf)(ecd)
O = (cda)(bef) — (cdb)(aef)

16. Find an exfression for the shortest distance from the end
point of the veelor 1, to the plane passing through the end points
of the vectQé”fg, rs Ta  All four vectors have their origin at
P(0, 0, 0),\

17, @onsider the system of equations

\‘: ar + by + ciz = dy
at + boy + coz = d, (41)
a:t + bay + ¢z = dy

Leta = ayi + asj + ask, ete.  Write (41} as a single vector equa-
tion, and assuming (abc) = 0, solve for g, y, 2,

18. Find the shortest distance between two straighi. lines in
space,



.,Wé‘ﬁrst construet g vector normal to b ]
~and b, We project a onto
this new vector through an

‘rotation of axeq (see Prob, 22, Sec. 9).
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19. Show directly thata x (b x¢) = {(a-¢)b — (a - bic, where
@, by ¢ take on the values i, j, k in all possible ways. Now show
that (38) iz linear in a, b, c, that is,

ax[bx(ac—i-ﬁd}]=aax(bxc)+,8ax(b x d)

ete. Since any vector is a linear combination of i, j, k, explain
why (38) holds for all vectors.

20. If a and b lie in a plane normal to 2 plane containing ¢ and
d, show that (a xb) - (¢ x d) = 0. .

21 If (e, @ @), (bY, b2, B%) are the components of thdyeciors
8, b, show that three of the nine numbers o8 obtained(By consid-
ering ¢ = g°hf — gfp o § = 1,2, 3, represent theleomponents
of & x b, that three others represent b x a, whilg,the remaining
three vanish. Represent ¢f as 5 matrix and 'sh&w that

_ = g A
By considering a rotation of axes (see Example 8), show that the
¢ in the new coordinate system abe'welated to the ¢*f in the old

. .\, 2 3

coordinate system by the .&ulations & = E Z astafer,
. L QY N T=1le=1

%P =1,23 Show that ®» — _ ghe.

The numbers ¢! = g2 ’a"bZ, ¢? = g% — qlh?,
NN € = glht — gz
’\\ 3
are the components of g x b.  Show that ¢« s 2 as%c® under 3

f=1
. ; It i3 for this reason that
the "GCj:t)ZIi\product 15 not considered to be a vector in the tonsor

anal)%is,’

-2.2‘\ We can constructa x b by three geometrical constructions.

ving in the plane of a
this vector, and finally we rotate
angle of 90° about the axis parallel

constructed veetor by the factor [bl.

+ Use this to prove that

EUf(b'i-tt:)=axb~i—axc

to b, magnifying this néwly
The final result Yields a x b



CHAPTER 2
DIFFERENTIAL VECTOR CALCULUS

16. Differentiation of Vectors. Let us consider the vector
O\
field
u = alz, y, 2, )i -I- By, 20l + v(w, v, 2,0k (42)°

At any point P(z, ¢, 2) and at any time £, (42) defines a 'Vé:c}or.
If we keep P fixed, the veetor u can still change becaqse“of the
time dependence of its components o, 8, and v, If “e keep the
time fixed, we note that the vector at the point P(..":\g z) will, in
general, be different from that at the point

Y
QG +dz, g + dy, 2 + e

Now, in the calculus, the student haslearned how to find the
change in a single function of %, ¥, 2, % . What difficulties do we
encounter in the case of a vector? i‘ictua,lly none, since we easily
nete that g will change if and o‘nly if its components change.
Thus a change in oz, ¥, 2. 1) produces a change in u in the
 direction, and similarly changes in 8 and v produce changes in u
in the y zmd z dlrecm@; srespectively. We are thus led to the
following deﬁmtlon

"\ du"—dal—l—dﬁj—l—d'yk (43)
(a:%-;-—d +—dz+—~dt)
"«33‘ '+(a d:v—!— d +—dz+—dt)

+(g”’dx+ dy +—d -i-—dt)

For example, let r = 2i 4 yj + 2k be the position vector of 5
moving particle P(z, ¥, z) in three-space. Then

dr =dzi+dyj+ dek
29
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and

4r dz dy dz
— e 2 _v = __k 44
YCaTat ity o

da’r  d%.  dy d%
===y TV Ry 45
TR R T it g, \( !

Fquations (44) and (45) are, by definition, the valoelby and
acceleralion of the particle. We have assumed that(;ﬁhe veclors
i, j, k remain fixed in space. N

If the vector u depends on a single variablg “!;: wre can define

W™
"ah

du a4 AD S
= = lim 2T A0 Jul)
g = lm {i&’.‘ 0

(see Fig. 27). It is easy to verifythat (46) is equivalent to (43).
'{4:"’ Bzample 14. Copsider a

AOND particle P moving on a cirele

xb\} Au=u{!;'1'£{t’]—u ) of radius » with constant

S
)2 \ a0 .
e} x“,\ angular speed o = e {(Fig.
Pac. 27, 28). We note that
that s\}' I=T0039i+?‘5in9j
g0 that €\
72\
Z“\.“ — dl' . . d6
N v_'az('_"’"smﬂl—f-rcosﬂj)—-
"ﬁ\ dt
i
A

~O _dv gy ) 2
3V a—-—;ﬁ:-&z-—:(—rcnsﬁl—rsin&j)(d—e)

Therefore the aeceleration iy

-___'—-—.._ .
4= —pny 47)

—_—

The point P hag an ace

: eleration toward th igi
magnitude w¥, Thig 5 o the fast et

ceeleration is due to the fact that the .
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velocity vector is changing direction at a constant rate; it is
called the centripetal acceleration.

z -
'y Ar
P
> g
-
)/ Q
T
0 -y
=3 '\\
3 \"/
,n}‘
X »\\
Fie. 28. Fia. 29\'

S

\
Ezample 15. Let P be any point on the sg%m curve (Fig, 29)

x = x(8) }
¥ = ys)
z= z(si
where s is arc length measured frem some fixed point §. Now
r = xﬂ{ﬁ}i’ y(s)i + 2(s)k (48)
8o that \\
dr« d:c dz
—= -k
) w\g" + i+ % (49)
Se-erer.0
AN ds ds  \ds ds ds
Q” _det gt
- ds? B

dr
from the caleulus. Hence Is Is a unit vector. As As— 0, the

. A . .
position of A_r approaches the tangent line at P. Hence (49)
]

represents the unit tangent vector to the space curve (48).
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17. Differentiation Rules. Consider

P(t) = u(t) - v(t) .
e + A — p(t) = ut + Af) - v(t + Af) — u(f) - v(t)

Now

u{f + A) = u(t) + Au
V(i + A = v{t) 4 Av A
(see Fig. 27), o that \"\
A
eitan —oy | ov mu o oag©O
Al YA Ta e

2%7

\\o
and passing to the limit, we obtain QS

%

o~
d(u - v) _ dv":.@ 50)
@ gt gy (

Similarly g

U)o

(51)

Ol - d(fu) du 4 N
2N/ ——=f—a % 2
Ve \ud T dt d " (52)

3 3 -_—_________—__
NQ%e how these for

SN Erample 16, I,
£

R
. Therefore
I“\ .

"4

mulag conform to th

e rules of the calculus.
et u(f) he a vector

of eonstant magnitude.

L-u =y < constantg

By differentiating we obtain

du du '
u'&‘t*-l--dE'u;-O

m-

&l
i
[=4
o
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. du du ,
Henee either @ 0 or s perpendicular to u. This is an

important result and should be fully understood by the student.
The reader should give a geometrie proof of this theorem.

Example 17. In all cases ¥
u-u = u?whereuis the length I
of u. Differentiation yields P
9.2 _ 9, ¥ ana P
dt “at di an r
P R RS
u O
. == ¢ « \J
LA i (53} AN
RS
Tth result is not trivial, for FIG 30’ v

E:cample 18. Motion in a Plane. Now r\=§\rR where R is a
unil veetor {see Fig. 30). Hence \®

v

Ne/

dr  dr_ o :'.“ dR

“u e

. \
Now i is perpendicular to{l (see Example 15). Also 1

gince R is a unit veetb(\ We can easﬂy verify this by dlﬁ'er-

de

dr
entiating R = c0§ 6‘1 + sin 6 1. Hence v = 7 R+ r P, where

x\" )
Pisa umt\e‘ctnr perpendlcular to R. Dlﬁ'elentmtmg again we

obtain \‘

AN d’v d*r dr dR dr do dﬂa do dP
R D =z
\”‘% at  ae di dt +dt 7 ae Prr i E
or
_dr dr do a8 (d&)2
——P P— R
T R+2dtdt + de _dt _,
sinee _
de
@®_ Y (54)

di dt
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Thus
% e\ d ( 2d6)
Y - g 55
a= [d{ﬁ (dz)]R+ d\" dt (55)
Problems
1. Prove (51) and (52). 2\
2, Prove {54). )
dary . &\
3. Differentiate | r - i with respect to &. o X
7 N
4. Expand :T [ x (q x 1)]. o)
ar dr O
5, Bhow that;ﬁ Tx—)=1x—

dt dtg ’ \'

dr dzr
6. Find the first snd second dcnmtivcs of d Fr

7.r=4acos wi+ bsin wl; a., b, w are constants. Prove that

d%r
rx%':wa xband'——l—wi’x

w4

S
ay

dr
B. Ifr i 0, show that r has a constant direction.

9. Risa un{ta\ {?‘QC’EUI‘ in the direction r. Show that

. ':’"' R de'z r xdr

‘\/ r?

db
1 i =
grfdt @ xa,—~ it © xb, show that
. &E(a xb) _%wx(a % b)

1L Tr = aet 4 bet, show that ;E:_r — @t =10. a,barecon-

stant \rectors

4, b are con-
stant vectors, Iy unique?

13. Show that i (E) 1 dr 1 @_‘ r
: dit \r rdt gt
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14. Let 1o be the position vector to a fixed point P in space, and
let r be the position vector to a variable point @ lying on a space
curver = r(s). Bhow that if the distance PQ is a minimum, then
r — rp is perpendicular to the tangent at @. Show also that

s n (dr)z o g 0E
ds? ds ’ds?
i, If u= a(a: ¥,z i+ Bz, 4, 2, 1)j + «lx, v, 2, Dk, show
dt o exd | oydi | oz di K
z N
L X ". N/
er )
P B -_‘-h""'h-,‘ " 4 .'\ 7
‘/ { ey ‘\
/‘:%“\-.P
Vs - \
\4\ oW
‘\ Nt
r e, \V
z \odd
i r ON .
%S i -y
x N
—&\—--—-
\<&
>
{& Frc. 81.

™3

16.¢ ”Lhe transformation between rectangular coordinates and
Sp‘i@nca] coordinates is given by

x=rsnfcose
y = rsin @sin g
z=rcosd

where 8 is the colatitude, ¢ is the longitudinal or azimuthal angle,
and r is the magnitude of the position veetor r from the origin
to the particle in question. Find the components of the velocity
and acceleration of the particle along the unit orthogenal vectors
€ €5 €, (sce Fig. 31).
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17. Consider the differential equation

du
; ¢ A.— Bu=0
@ ap T2 gt B _

where A, B are constants. Assume a solution of the form
u(ty = evC, where C is a constant vector, and show that
u(f) = Cwe™ + Cse™ 15 a solution of (i), wy, w. being roots uf\
w? + 2Aw + B = 0. Consider the cases for which 42 — B <{,

A*—RB=0,4*-—B >0 Ko
18. Find the vector u which satisfies 2N\
du_du_pdu_o o0
de dr T4 ~A\V
d dau ' N
suchthatu=i,—u=j,—=kf0rt= \\
dt dt® R
19. If u; is a solution of " \ O
du du
7 iy =10
Fr + A dt’l + B + Cu
and if uyis & sdlution‘ pf,\
K
. di d’u
. —~F
(ii) dl’f‘ A+ A F + B + Cu (t)

show tha,b\m + Us is a solution of (i) provided A, B, C are
lndepeaident of u.  Why is this necessary?
203 A particle moving in the plane of (r, §) has no transverse

Ny 1df ds .
'”‘aoeeleratlon that is, ~—{+2—) = 0. Show that the radius
\J rdi\ dt - :

vector from the origin to
equal infervals of time.

Y18, The Gradient. Let ¢(Z, ¥, #) be any continuous differenti-
able space function.. From the caleulus

the particle sweeps out equal areas in

. do do de .
de = — 4 —= —L -
¢ oz % -+ 3y dy + % dz {56)
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Now let r be the position vector to the point P(x, y, z).
r=umi+4+yj+ 2k
It we move to the point @iz - dz, y + dy, z + dz) (Fig. 32),
dr = dri+ dyj+ dek
Xow notice that (56) contains the terms dz, dy, dz and the terms
dp dp ¢ \

— > —  We define a new vector formed from ¢ by takingdts
gr oy Oz ¢(\A

three partial derivatives. Let del ¢ = Vo be defined by

A~

%
S,
N

7
 {

de | dp . dg
Ve=21 4225, % (L
e=ait g itak (& (57)
. . 7 AN
We immediately see that “< 0>
— Q) Q
de =dr-Vo  (58) O
—_—— ‘,,’:’.. r+Ar ArP dz
We shall now give a geomet- ~3% dx
rical interpretation of Veai® T dy
At the point P(xs, v, 20), his 0

the value ¢ (x4, Yo, 20) g,o"‘g\;hat
e
e(%, Y, 2) = o(@m Y5, 20)
represents a ﬁliffﬁjée which
obviously coniains the point
~C
'Réajl): #o, ZU) Fre. 32.

Asl ng' a8 we move along this surface, ¢ has the constant value
#&or s, 20) and dg = 0. Consequently, from (38),

N\
dr Vo =0 (59)

Now Ve is a vector which is at once completely determined after
¢ has been differentiated, and Eq. (59) states that Ve is perpen-
dicular to dr as long as dr represents a change from P to ¢, where
@ remains on the surface ¢ = constant. Thus Vi is normal to
all the posgible tangents to the surface at P so that Ve must
necessarily be normal to the surface o(z, ¥, z2) = constant (see



o

\:
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Fig. 33). Let us now return to dp = dr - Vo. The vector Ve is
fixed at any point Pz, ¥, 2), g0 that d¢ (the change in ¢} will
depend to a great extent on dr. Certainly de will be a maximum
when dr is paralle! to Ve, since dr » Vo = |dr||V¢>] cos 8, and cos @

vé is a maximum for § = 0°
i Thus Ve is in the direction of
maximum increase of ¢{a7Y, 2).

P Let |dr] = ds so that,

oA\
-~ Nows
- d :‘,\ ~
@ | .
— =V 60
¥ as ¢ (60
N\

0 ™Y whereNMNYs & unit vector in

the-dircetion dr. Hence the
ﬁhang:,e of ¢ in any direction

X MNie' the projection of Ve on
Fic. 83, R\ “the unit vector having this
" direction.

Ezample 19. To find\ \at unit vector normal to the surface
4y —z=1at the pPoint P(1,1,1). Here
y‘.}) =g+ —2z
\ Veo=20+29 — k

=% —2j — kat P(1, 1, 1)
Thus A</

AN s
& 3

N " Ezample 20. We find vrif r = (#° + 92 + 223, The surface

' 7 = constant is a sphere. Hence ¥r is normal to the sphere and
80 18 parallel to the position vector z. Thus ¥r = kr. Now

dr =drVr = kdr.r = Iy dr from (53)
Therefore

and 7r

5 =
!
R

=R (61)

Example 21
Vi(u) = f'(u) vu, = ulx, ¥, 2)
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Proof:
PR PO
VI ) = 3 6yJ+sz
J du + a_u s t a_u
=) L )
= f'{1) Vt
Erample 22
3 Oy
Vil s, « . v 5 Ua) = f +—f + aik \E\ -
_ (a_f%i_}__aiaua._bgééu )
du, 0% Uy Ay _ K0, 0z
o of RS,
= o \
- dE 7o Ve 2 (62)

Ezample 23, Consider the ellipse giv eﬂ \by 1 + 1o = constant
(see Fig. 34). Now V(r + r3) 15 m)rmal to the ellipze. Let

¥ «8. )
&N
AN
&
e T
\\\' V iy + Ig}
O ~P
\Y; T, ry
2’\’“‘
Y »X
~~” B 0 A
’%‘Z;
e N
/*\’ W 4
\/
Fra. 34.

T be a unit tangent to the ellipse. Thus V(ry + rz) - T = 0, and
Vri+T = =V - T (63)
But from Example I8, ¥r; is a unit vector parallel to the vector

—

AP, and Vry is 3 unit vector parallel to the vector BP. Equation
v

N\
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(63) shows that A}-’ and BP make equal angles with the tangent
to the ellipse,
19. The Vector Operator V. We define -

3 & - 9
v 16x+16y+ 9

<
N ¢

d . . . 2\D
Notice that Vis an operator, just as g B an operator in tlie differ-
X N

ential calealus. Thus

L3, a I\
Vso:(—"—l-:l—'-kk—-)w‘
1y i

We call v (del), a vector opegaﬁgr"because of its eomponents

a . e . .
: o> 1t will help us ig~gHe future to keep in mind that v
dr dy a2 Q28
acts both as a differentiaf operator and as s vector.
Ezample 24 \"\
'\\,i

. O{uy "\ , d(up I

Vow) =1 220 3 800) |\ o)

1—5

78 oy Bz

A"
¥ o .oy’ v au M o
SW1— —+ k— i— i — -
"\\( ar TGt -az)-“+('ax+lay+kaz)”

V) = u ¥ & » vy . (65)

This result is eagily
differential operator,
caleulus, :

remembered if we keep in mind that ¥ is a
80 that we can apply the ordinary rules of

Problems

1. Find the equation of the

| tangent plane to the surface
¥ — 2 =1 at the point (2,1, 1.
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2. Show that v{a-r) = a, where a i3 a constant vector and 1
is the position vector. :

3. Ifr = (2 + y2 + 2%, find Vs~ by explicit use of (57).

4. If o = (r xa)+ (r xb), show that

_Vr.o=_bx(rxa)+ax(rxb)

when a and b are constant vectors.

5. Lot ¢ = ' + 3% Tind V¢ and show that it is the maxi-
mum change of . .
6. Find the cosine of the angle between the surfaces R \J

N

2y +z=3 (‘.}‘
and # log z — y* = —4 at the point of intersection B4, 2, 0.

7. What is the value of Ve(z, , 2) at a point.tiat makes ¢ a
moximum? ] p \\

8. The surfaces ¢(z, ¥, 2) = constant an Wiz, ¥, 2) = con-
stant are normal along a curve of intefsection. What is the
value of Vg - V¢ along this curve? o\

9. What is the direction for thevmﬂbﬁmum change of the space
function o(x, ¥, 7) = £ s8inz — y o8 z at the origin?

10. Expand ¥(u/v) where 1 =ulz, y, 2), v = 02, ¥, 2).

11. Let 7 and z be the distances from the focus and directrix
to any point on a parg i3." We know that » = 2. Show that
(R — i)+ T = 0, where Tis a unit tangent vector to the parabola,
and interpret this equation.

12, Show that\the ellipse r, + 72 = c1 and the hyperbola
T — Tz = ey ,,Qli%fef'sect at right angles when they have the same
foed, AN\
i3. I‘f:.VE is always parallel to the position veetor 1, show that
o = o0, r? =2 + ¢ + 2%

1% TFind the change of ¢ = zyz in the direction normal to the
surface yx? + ay? + 2% = 3 at the point P(1,1,1).

15, If f = f(=!, 2% «*) (see Example 8}, and if

s = ma(ylr y2: ya):
a=1 23, show that

of 3t

aﬁay“ a=1,2,3

Sl
|
| I

A=1



42 VECTOR AND TENSOR ANALYSIS [Brc. 20

: dzx oy’ _1ifa=g
Loy dx®  Oifa =8

- oz
Using the fact that o » show that

3

5

o _ za_fai,a=1,2,3.
dze o Ay Gz

16. Apply the results of Prob. 15 above to the transformation

& = rcosf N\
y=rein O\
2=z A\
O
d 1 d & "':'g
and show that —f: - —'fa o are the components of ¥/ along the
dr r o8 dz ¢

three mutually orthogonal unit vectors e,, s, @}\which OCCUr in
cylindrieal coordinates. \
088 d
4 ~.\_<p + _I' N v
By ot T
18. If r = ai + yj + 2k, find r » VigXfor

@ = TyerT _.{_’lz}ge + f + E)
z oy

17. If ¢ = oz, ¥, 2, 1), show that %{’

MY
19. If u = u(z, y,'\é,.ﬁ) show that j—? = %% + (g% . V) u.
20. If u(te, ) = tu(x, y, 2), show that (r - Viu = nu.
20. The D,i(ér"gence of a Vector. Lot us consider the motion
of a _ﬂuidxtsqf.fdensity or, ¥, 2). We assume that the velocity
field i giiven by £ = u(z, y, 2)i + v(z, ¥, 2} + w(z, ¥, 2)k. This
typegoivmotion is called steady motion beeause of the explicit
ip;}tff,’?:ndence of p and f on the tima. We now concentrate on
,"\tl“i;e fibw through & small parallelepiped A BODEFOH (Fig. 35)
ot dithensions dz, dy, dz ’

Let us first ealeulate the amount of fluid passing through the
face ABCD per unit time. The @ and z components of the
velocity f contribute nothing to the flow through ABCD. The

mass of fluid entering A BCD per unit time is given by pv dx dz.

The mass of fluid leaving the face EFGH per unit time is

3
[Pl’ k5 —Eg{idy] dz dz
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The loss of mass per unit time is thus seen to be equal to

He2) 4 dy dz
ay

1f wo also take into consideration the other two faces, we find
that the total loss of mass per unit time is

8 d 9
[ {pr) n (ov) o+ (p%U)] iz dy &
ar dy a9z
Z ’:"'\’
4 :\
« \/
z‘n‘&’
C G , {x\\ ¢
\
dz X))
pl B/
V] /g H, ol N/
/ ” X
/ X
A dE
0 ::{:“""‘ —¥
O
(R
:\\
“
\ng Fie. 35.
O
so that
& i”\/‘ ! d
\™ d{ou) " 3(pr) | d(pw) 6)
ox dy oz

represents the loss of mass per unit time per unit volume. This
quantity is ecalled the divergence of the vector pf. We see at
once that :

3 1dM
V. (of) = div (of) = QE%‘) %’;—) +—(§zﬂ =5 O
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since i, j, k are constant vectors. M and V are the mass and
volume of the Auid,

The divergence of any vector f is defined as v-f. We now
caleulate the divergence of e(z, ¥, 2)f.

_deu) | dew) | dlew)
Vol = Ty T e |
fu By | dw do de 6_(p)."\
=@(EE+@+ az)+(uax +vay +w'{32\.
&
Velof) = oV f+£:Vp N7 (68)

We remember this result easily enoughMf }Ve consider V as a
vector differential operator. Thus, wheg operating on of, we
first keep ¢ fixed and let V operate onfpand then we keep £ fixed
and let V operate on (V. ¢ is nongense}, and since f and Ve are
vectors we complete their mgltipﬁcation by taking their dot

product, AN
Fzample 25. Compute.}%’s tif f = r/r® (inverse-square force).

V- () ‘——”‘?’_a{v.' r4r.Vrs _
AT r e (=3t vy
\'\‘ﬁ 3= — 3rir.r = 3% — 33 =

&~ V(i) =0 (69)
N —_ .
THig\ig an important result,

: The divergence of an inverse-squarc
Jorce is zero.  We note that

Y

9z  dy gz
Ver == —_— —_— =
Bx+6y " oz 3

- Ezample 26. What is the divergence of a gradient?

dp 8 0
V'(th):-V-(—-—i 2. __E)
. !t ayJ + 9z k
e 9% o
To g T
_ Y azt
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This important quantity is ealled the Laplacian of .

az(p 32¢’ a2w
L =V« (V = V2 = — —_— ——t
Ay =V (Ve =V = i+l ()

21, The Curl of a Vector. We postpene the physical meaning
of the curl and defing

i j k
) a 4 @ : O\
1f=Vxf=— — — W)
ou X dr oy oz {3\
w 0w ”(f}‘
0w an (au 6w) (ﬁ?}*:\.\ Bu)
f=il——— ) e =)
v x (a 62) ] dz ax T ot Y 71
O
. Pa
Ezample 27 o\
i 3 ;k’ f
v _ d _i“é =0
x1= dx ey o0z
BNy @
Example 28 \»\
i j ik
Y x (o) = | 2 8
XA oz &y’ Oz
¢
U ev g
e d(ev [alew)  d(ew)
o) e oo ot
O dy 0z d x
“:s:' ’ 3 3
pare o]
<“" ax Ay
’ ow v _(au aw) d B ]
—_ 1 — -_— k -_ — =
V x (o) ﬁDI}(E)y 8z)+] az o + ax ay
i 3§ k
o de de¢
+ de ¢ %
dx dy 0Oz
o ovow

7 x(ef) =V xf+ Vo xf {(72)
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This result is easily obtained by considering V as a vector differ-
ential operator. o
Example 29. To show that the curl of a gradient is zero.

i j k|
o -\ w % (e o)
Vx{(Ve)=|8z dy 92| =1i|—— —
a
dp 0 B0 dy dz 0z dy
ar dy dz N
% a% a2 A%
P 22 (58
3z 8z dr dz ax ag\\ By du
Hence !
- (”‘.
VxVe=10 O {(73)
— &

provided ¢ has eontinuous second deriv tlves
Ezample 30. To show that the dwm;gence of a curl is zero.

\
3 fow & i dw d I ou
v fz“(_‘_) (—*“) & -5
x5 dr \dy e + 69 dz dz T dz\dx Iy

M _a%:,.g S 9%y 8% % %
ady 3 azay _6‘z ¢ dxdz  dx dy dy dx

Thus-
M\\

) Ve (¥xfi=0 74

& vV xf) (74)

_——

Emmpleﬁl;“ What does (u - ¥)v moan? We first dot v with
V. Thisuelds the scalar differential operator
C ,\“,

{ a a
o\ ux__+uyh+uz'_
\ &y dz

Then We operate on v obtaining

av
@WW=%£+%@+mW

af
df—_'d$+—dy+-—dz
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and

df = {(dr- v)f (75)

sinee dr = dx i+ dyj -+ dz k.
Iff =1z, 9,2 0,

of
df = (dr- V) + —dt @
' O
Example 32 \3\ )
ar or o N
« ¥ =y, — 10— L, — A \
(v-Vir=v 6x+uy3y+ 2D
= i 4 0 - kN
_—__'::\\)

(v-Vr =3.7 (77)

where 1 is the positwctm ;rj-l— ¥i + zk.
Erample 33. Tet us @gigd Via-v), Now

u X (V%v)% Vifu-v) — (u-V)v
N :

Here we have af "\éé’l the rule of the middle factor, noting also
that V operates, only on v. V,(u-v) mecans fhat we kecp the
componentg@f i fixed and differentiate only the components of v.

Simil@r{sz,: T x{Vxw=V(u-v) — (v:V)u Adding, we

obt-a'%”\ ¢
\ Nt/

E’g(l}v) + Vo(u-v) =ux(¥V xv) + v x(Vxu

+ (Vv + (v T

w4

J and

Viu-v) =ux(vxv)+vx(¥ xu) + (w-V)v+ (v-Vju (78)

Example 34

Vx(uxv) =@ -V)u—vwy-u +uv-v)— (u-v)v (7D
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Example 35
V-(u XV) =Vu°(u XV)+Vo°(uxV)

V-uxv)=Fxuw vy—(Vxvi-u (80)

| Example 36

) N
Vx{Vxv)=V(V . v) — V¥ (81)
O
Ezample37. LetA = ¥V x (o) where V2p = {), ¢ ( Wc now com-
putc A-V x A, Since A = Vo x i, we obtam -

de
VXxA=V x(Ve xi) =(- V)Vrp-\fv%'—va—
G

from (7}, Sec. 22. Thus \\,
i j ok |[LA"

d¢ B¢ dal (a5t & a%)

A'VXA';' —_ v k—
d dy »32 6x’+16y ax+ 9z dz
1 {} 0

ap &%a 6@9 &
S
Q{ay dx ay 9z 8z
If also ¢ = X(DY()Z {2), we can Immsdlately conclude that
AV xA =
22. Recgpltulatlon We relist the above results:
:‘R{a’u} =u¥Vv+ vVu
12‘~V (pv) = ¢ V. .y 4+ Vv

w;..Vx(¢v)=wav+Vva
Q .V x{(Vg} =0
R\ V- (Vxv) =0
\\, G v. (uxv)~(qu) V- (Vxv).u
} 7.9 xuxv) =(v. Viu —w(v.u) + FuV.v) — (u-V)v
BV x(Vxv)=vv. V) — vy

9. V(u-v) =ux(Vxv)
10 (v-Vir=v
IL.v.r=3

12 ¥ xr=0

FVX (T xu)+ - Vv + (v-V)u

13. df = (dr - ) + ga‘t
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dy
11, de = dr« ¥ — dt
© = G ¢+ ot
i, T (r %) =0
Problems

Show that v3(1/r} = 0 where r = (22 + 3> + 29},
Compute V2, v% T(1/r) where r = (22 + y* + 29},
[xpand ¥{uvw).

4. IMiud the divergence and curl of (xl — ¥j)/(c + y); \uf\‘
ceorzid ylogxj — 2%k O

G, a = ari 4+ Syft yok, show that ¥ia 1) = 28,0

. Show that ¥ x [f(rir] = 0 when 7 = (22 + ¥l '+ z* ]i and
r = o+ y 4+ zk. .\\

7. hetw = ulz, y, 2), v = oz, 4, 2).  Supposdrand v satisfy
an equation of the form f(u, v} = 0. Show thab Ve x ¥ = 0.

8. Assume Vu x Ve = (¢ and assume lhaQ e move on the sur-
fitev u{x, y, 2) = constunt. Show that ¥ remains constant and
henve vo= f(n) or Flu, v) = 0. O

9. Prove that & necessary and aufh( ient. eondition that w, v, w
sutlsfy an equation f(u, v, w) = ﬁ,rs that Yu » ¥ x Ve ~ 0, or

oL —

NS

dul au. die
jox oy oz
N
dr o9y oz
,’\.3 dw dw Jw
e\ o oy 9z
&

This dcf‘};ﬁinant is called the Jacobian of (u, v, 1) with respect
to (aw, 2), written J{(x, v, w)/(z, ¥, 2)).
.\1"0 If w is a constant vector, prove that ¥ x (w xr} = 2w,
Nwhere 1 = i + yj + 2k
1. If pf = ¥p, prove that f-V xf = 0.
12, Prove that (v V)v = §V¥* — (v x V)v.
13. If A is a constant unit vector, show that

A [Vw-A)~Vx{vxA)]=V-v

14. If f*, 2, f* are the components of the vector f in one set of
rectangular axes and ', J*, /° are the components of £ after a



&8 a change of coordinates from the
‘the r-0-¢ coordinate system. The surfaces

P
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rotation of axes (sece Example 8), show that

§@=j@
R} ax s oxe
g0 that ¥ - £ 18 4 scalar invariant under a rotation of axes. Also
see Prob. 21, Sec. 9. '
156. Prove (79), (80), (81). ~
16. Let f == fii 4 foj + f3k and consider nine quantities
_% of

iy =

.. AW,
Fraare LA O
Show that g = —gs and that three of the nine’i:_[ii.?a.nt;i't-ins‘, vield
the three components of v xf. Tse this résalt to show that
Vx(ef) =9V xf4 Vo xf. ) \¥;

23. Curvilinear Coordinates. "'Of‘acn‘thg mathematician, phys-
icist, or engincer finds it convenient #45 use a coordinate gystem
other than the familiar reclangulg¥ @artesian coordinate system.
If he is dealing with spheres, he will probably find i% expedient to
describe the position of a poi:n’tﬁn space by the spherical coordi-
nates r, 6, ¢ (see Fig. 31). ~Lét us note the following: The sphere
2 -+ y* 4+ 22 = 12, the e 2/(2% + y2 4- 2 = cos 6, and the
plane y/z = tan ¢ pdds through the point P(r, 8, p}. We may
consider the trangft)?ma,tians :

Q\\ r= (x4 y* + 22}

,, z

A\ @=cog ! — "
S, @ + % 4 o)t
& .
N ¢ = fan—1 2
R X

2-y-2 coordinate gystem to

= (@b g =

8. =cos™! [z/(2? L g2 1 2 = ¢y, ¢ = tan~! y/x = ¢; are respect
tively, a sphere, cone, and plane, Through any point P in space,
except thf_z origin, there will pasg exactly one surface of cach type,
th? coa.rdlnates of the point P determining the constants €1, Cay €3

J_"'hfs miersection of the sphere and the cone is 4 cirele, the circle
?f latitude, having e, ag its unit tangent vector at P, :I‘his circle
1s called the o-curve since r and ¢ remain constant on this curve
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so that only the coordinate ¢ changes as we move aleng this
curve. The intersection of the sphere and the plane yields the
g-curve, the circle of longitude, while the intersection of the cone
and plane yields the straight line from the origin through P, the
v eurve. - &g and e, are the unit tangent vectors to the #- and
» curves, respectively. YThe three unit vectors at B, e, es, €, are
mutually perpendicular to each other and can B{ considered as
forming a bagis for a coordinate system in the neighborhood of\R.
Unlike i, j, k, they are not fixed, for ag we move from pdint to
point their directions change. Thus we may expect to find more
complicated formulas for the gradient, divergenge,) eurl, and
Laplacian when dealing with spherical coordinatgs;: ’

“Bince Ve is perpendicular to the plane ¢ = panstant, we must
have Ve parallel to e,. Hence e, = ks Ve, whete ks is the scalar
factor of proportionality between e, and-We! If drs is a vector
tangent to the g-curve, of length ds; = C &’1'3], we have from (5:9

d&’s )

. e .
dp = dry» Vo = drz» f = — so that dss = hs dp. Hence h; is
3 3 *)

that quantity which must be mql'tiﬁlied into the differcntial change
of coordinate g, namely, de; to yield are length along the g-curve.
Thus e, = r sin 8 Vo, while similarly e, = Vr and ey = 7 V0.
We note that e, = eﬁni:ep = p2gln 6§ VO x Ve,
é\%’ew xe =7 8n Ve xVr
Me, =€ xe€ = rVrxVl

- Any vectorat 7 may be repregented as f = fre, + fa€s + o€y
The scald®s s, fo, /s can be functions of r, 8, ¢. We may also
l'epreS\fli}‘“f ag f=HVr+ firve+ far 5in 8 Ve and also by
f =‘f'1>‘3 gin 6 V8 x Vo -+ for sin §Ve x Vr 4 for Vi x V0. Wealso
pqe-é; that the triple scalar product Vr+Vl x Ve Is equal to

“\t sin 6)-" and that dV = ds; dsp ds; = 7 sin 8 dr df de.

W Spherical coordinates are special cases of orthogonal curvilinear
coordinate systems so that we will proceed to discuss these more
general coordinste systems in order to obtain expressions for the
gradient, divergence, curl, and Laplacian.

Let us make a change of coordinates from the z-y-z gystem to a
U1-Us-g System as given by the equations

= wi{, ¥, 2)
e = ua(X, 4, 2) (82)
ug = uslx, ¥, 2)
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We assume that the Jacobian J[(uy, s, us)/(z, ¥, 2)] 5% 0 so that
the transformation (82) is one o one in the neighborhood of 5
point. A point in spuace is determined when z, ¥, z arc known
and hence when w1, us, 4 are known. By considering

ul(x: Y, z) =1

us(x, o, £) = €1, us{z, ¥, #) = ¢;; we obtain a family of surfaces,
Through a point P (&, 4o, %) Will pass the three surfaces,

)y
w12, 9, 2) = ua(To, Yo, 20) O
N
z O
A ’
»:':
<
¢ &\J .
X\
..\}”
P \d
_.E”\,” -
.’\\‘,z
L x
AN Fra. 36.

,n\' ot 7
3

intersect orthogonally at the po

mtersectiop of the surfaceg 1 = c1and uy = ¢, we shall call the
:'ﬁ ;::1“:&, si:ince along this curve only the variable U3 Is allowed to
tangegn{; . %}E Uy Uy us be three unit veetors issuing from P

: O the i, wu,, curves, respectively (see Fig. 36).
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Wow Vi is perpendicular to the surface

us(Z, ¥, 2) = us(Zo, Ho, 20)

@n that Vus is parallel to the unit vector us. Hence uz = ks Vi
where ks is the scalar factor of proportionality between us and.
Tus. Now let drs be a tangent vector along the wus curve,

|drs| = dss.  Obviously drs - us = dss, and A
drg» s = dry - ha Vs , \:\’
go that from (58) . O
dsa = hs dus N "‘ 3 (83)
[ '”‘.\\.

We see that kg is that quantity which must b8 multiplied into
the differential coordinate du; so that are, 1ezng‘th will result. For
example, in polar coordinatesds = 7 d& r{WG move on the -curve,
go that 7 = Ra. P\

Similarly, wy, = hy Vi, 22 = hg Vug, so that

Uy = U3 x,l}};‘ = hghs Viz x Vg

U = U )lei = hshy Vuz % Vi (84)
tls =~~€1 XU = h1h2 Vi ¢ Vi
and ¢ 28D :
X
\ Y
Ve Vs x Vi = 5+ 2 2 (hyhoha)! (85)
{ 4 h h2 ha
x'\;
7\ )
Notq%aﬁ the differcntial of volume 1s
\ AV = dsy dss dsg = Fahshs Gus dus dus

:..\;’ 3
\\a‘iid making use of (85) as well as Prob. 9, Sec. 22,

v =J (M) daty s g (86)

1, e, U3

~Ezample 38. In cylindrical coordinates
ds? = dr? + r2df? + dz?
sothat by = L, he =1 hs = 1
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Example 39. If f = f(u, s, ua), then from Example 21,

Vi = ki Vi + y

of
— Vs - — Vi
Uy 6'1412 du;

19 1 of 1 of

= — — — 1 87
Vf h] aul th + hg auz ta ha 6u3 s ( )
N
In cylindrical eoordinates . o
A
of 1 8f of A

Vf=— R --—P — k \.J
f ar * r a6 + az A

< .":
Our next attempt is to obtain an expression fox the divergence
of a vector when itg components are knowd in an orthogonal

curvilinear coordinate system. Now O
A
f=fiws + foue + fou, LV
= fahshs Vs X Vg + fohghy ViaxNu1 + fahiha Vuy x Vi

N/

from (84). Consequently N
V-f= V(fjhzhs) - Vs x V'I'zfs,::{—:’fflh2hs V- (V’L&z x Vus)

+ V(f2hihy) - Yﬂ&g")& Vur 4 fohshV - (?us x Vi)
+ V(J“S}ll‘h@}‘ Vi, % Vus + fathzV - (Vul X V'M,g) (88)
Now V{fikshs) j&’}g X Vigg = ﬂ'}z—f-@ Vit Vg x Vg, and
2N/

WO Ve (Vs x Vug) = 0
80 th{t:’CSS) reduces to
O\

- ’~:' 1 a(hahsfl) a(ﬁshlf ) 6‘(}5 h f )
N Vof = | Z¥Ve3h) 2 12 f3)
<\\; ™/ hlh?}ba [ aul + a?,{fg + aus ] (89)

If we apply (89) to the vector VV as given by (87), we obtain

U [& (R, a 3 (hid,
vy = L [m (-2__? l) 9 (hehi OVN | @ (hihs 3V
hahshg dui\ Ay oy + Fus \ Ay duy + Qg \ Ry Ous )

(90)
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This is the Laplacian in any orthogonal eurvilinear coordinate
system.
Ezample 40, In cylindrical eoordinates

-0 26D @

Ezample 41. Solve V2V = 0 assuming V = V(r),
N\

| r= @+ &

From (91) _

E 4

d_Y_c R \/
_ rdr( " _.jl.t 3

and \:”\,\ ’
V=eclogr+cs g

A
Finally we obtain the curl of f. (N7
£ = fuy + fous RVl
= fihy Vs —i—.f;hz Vita -+ fahs Vus

and X A\

V x f= V(f1h1) )(\W1 + V(fzhg) x Ve + V(fsha) x Vit

since V x (Vul) \é‘x (Via) = V x (Vi) = 0. Now

(flhl) L B

V(f1h1) );'(ul =

"/ : . - a( f1h
\\\ +—(‘;:—a‘)wa x Vi

AN .
N\ u;z
./ Replaeing Vus % Vul by — B! ete., we obtam
1fa2

Vxf=

s [ohefa) - 00aafa)] . ua [30afy) _ 3hafy)
hghs[ Ol - s ]_}-hﬁhl_[ dup dur ]
Ug [3(hzfz) (i)

] (92)
hlhz a’h'q_ auz
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. Problems

L. For spherical coordinates, ds* = dr? 4 r2dg? + 12 gin? 2 dt
where 4 is the colatitude and ¢ the azimuthal angle.  Show that

1 [a/,. .o 3 /. a
o= —{rsn o)+ 2 (gn ¥
v r”sinﬂ[ar(r s aI:)Jrae(s aI.;)

, ' a7 1 ay
+ 2 (27
de \5in 0 9

2. Solve V2V = 0 in spherical coordinates if V = Vel

3. Express V-f and ¥ x f in cylindrieal coordinate$,)

4. Ixpress V-fand V xfin spherical coordina\teé«:by letting
a, b, ¢ be urit vectors in the 7, 8, ¢ directions, refpectively.

5. Write Eq. (92) in terms of g determinanty

6. Show that v x [(r V#)/sin 8] = Vo wheve 7, 8, ¢ are spher-
ical coordinates. \Y

. N
7. K a, b, ¢ are the vectors of Probld, show that
da da aa: u
— =0 — =5 L s gp
ar . Y ' A smfc
b _o SV ap
ar , 69_”:_3" 659_-00590
gc e\ dc
5;=0, ,\E‘:‘#O, éq—o=—~sin9a—cosﬂb

N\

8 If ¢ f.\‘fi;si’n §eos ¢, ¥ =1 5in §sin ¥, 2=rcos# then
the form d,s\?f dax® + dy? + gu? becomes
\NY
’§M,: ds? = dp? L p2 g + r2gin? ¢ de?

R\ : 3
Frove this. If, in general, ds? = Y (dz)2 and if
- \ 7 . : . e
N\ =2y, v )
@ = 1, 2, 3, show that

dxr fpe .
ds? = == = dyf dor
Z dyf dyr O

= E Jey dy? dyr
- -
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where
B 23: dz° 9z
oy = ¢=1ayﬂ ay
Check this result for the transformation to eylindrical eoordi-
nates:
z =vcosf
y = rg8in.@ N
2 =z ¢ {\ «\
\\ “

and obtain ds? = dr? + r2 d6* 4 dz%
9, By making use of V¥V =V(V:V) -V x,(‘? xV), find
72V for V = v{r)e,, V being purely radial (spher)cal coordinates).
Tind vV for V = f(r)e, + ¢{z)e. in cylmdrlcﬂi\eoordmates
i0, Find vV if V = w(r)k xr,
11. Consider the equations O
~ AN d%s
A wv(v-.s) %g‘\?’zs =7

X, i, p constants. Assume s’g :;e}P‘sl, p constunt, and show that
x+ #)V(V Sx) + (u+ ppPs1 =10

Next show that [v2\+ (e + op?/ (3 + W)V -8 =0,
O At+p =D

12. Ifié{’\ﬁ % (1), V3 = 0, show that

) 1 (aw FEVRNY. Y a%p)
\\\ A-VxA= o o\epasar  98opar

o *Q) that A -V x A = 0 if, moreover, ¥ = R(r)6(8)®(e).
\.’ 13. Show that ¢: = Ae’*’ J- Bev + Cle* satisfies V21 = ¢, and
show that if gs satisfies Vig, = 0, then ¢ = o1+ o2 also satisfies
Vi¢ = . Find a solution of V¢ = —e.
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CHAPTER 3

DIFFERENTIAL GEOMETRY “
24. Frenet-Serret Formulas, “A threc-dimensional ourve in a
Euclidean space can be represented by the locus of ‘hhje‘end point
of the position vector given by W

-
{

ﬂn=am+w®r+m%§': (93)

where ¢ is a parameter ranging over a sgtoof values b2t <t
We assume that x(t), y(£), 2(1) have conthuous derivatives of all
orders and that they can be expanded’in a Taylor series in the
neighborhoed of any point of thé\clrve.

- - 3 “: d .
We have seen in Chap, 2a See. 16, that éf i the unit tangent
N 3

%
*

| N
veetor to the curve. Lefit = = Now t is a unit vector so that
Q <

its derivative ig pE{pendicular to t, Moreover, this derivative,

®)
7 tells us how@aﬁf the unit tangent vector ig changing direction

as we mo;te.iéh)ng the curve. The principal normal to the eurve
18 consequently defined by the equation
2

W

Nl T (94)

T
&

: oo dt

here « is the magnitude of 7 and is calied the curvgture. The

reciprocal _uf .the curvature, p = | /x, 1s ealled the radius of curva-

ture. It is important 1o note that (94) defines both x and m,

¥ being the Iength of @
ds

dt ]

o At any point P of OUr eurve we now h

while n is the uni vector parallel to

ave two vectors t, n at

right angles to each other (see Fig, 37). Thig enables us to set up
58
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a local coordinate system at P by defining a third vector at right
angles to t and n. ~We define as the binormal the vector

b=txn

All vectors associated with the curve at the point P can be
written as a lincar combination of the three fundamental vectors
i, m, b, which form a trihedral at P. O

z
I

Fig. 37.

\,'

‘.\1

dn . . . .
Let wNiow evaluate Ef;z and N Since b is a unit vector, 18
/' &

derxm}ﬁve is perpendicular to b and so lies in the plane of t and n.
M{ereover bt = 0 so that on dilferentiating we obtain
\ w4

N/ db

E; 1+ b n=0
db
or db «t = 0. Hence db is also perpendicular to t so that —
ds ds ds

db ) .
must be parallel ton. Consequently, i n, where r by defini-

db .
tion is the mugnitude of A is called the torsion of the curve.
s
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f dn
VFinaﬂy, to obtain 7 we note that 1 = b x t so that
]

db
d—nsz@—t+—xt=bxm+mxt= —«t — 1b
ds ds ds

. The famous Frenet-SBerret formulas are

ﬁ A
ds P £ “\’
dn )
ds
db ON
ds

i

I
P
5
+

=
=2
pa—g
7

N
o
o=

&
S

Successive derivatives are funections of t, ﬁ,‘:b’ and the derivatives
of k and r, \‘

Ezample 42, The circular helix ig" E;i\}ren by
t=gqgcosti- asmwtj-i— bik

dr
t=——( aa“in't1+acost]+bk)
and O
¢ < dry\?
t-t =~1\é\(£) (a® sin® ¢ + a? cos? ¢ -+ b?)
'x’; 1y %
5 =@+ (9
7 ds
Hence\s:\;{’

KN t=(-asintitacosii bk)(at 74
_ _ 08 £ j + bk)(at + b%)
AS

w'\,,i _ dt N
WV K1l = (—a Co8 {1 — g sin £ §)(a? 4 p2)-!

80 that
k= afq? 4 byt

Al (e® 4 b?)

i j k
b=txn=|—ggn; a cos f (@ 4 b3y

—cos { —sgin¢ 0

= {bsinti—bcostj+ ak)(a® + b2yt
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and
db . .
P n = (bcosti+ bsinti)a®+ Y
s that
= b{a® + b¥)™!
Problems

i. Show that the radins of curvature of the twisted curvé Q

z = log cos 6,y = log sin 9, 2 = +/20isp = /2 csc 26. O\
2, Show thatr = 0 is a necessary and sufficient cond1t10n~that

a ourve be & plane curve R
3. Prove thatr = — (r 3 i B D :
™
4. For the curve z = a(3t — %), y = 3aff 2= a3t + %),
ghow that x = v = 1/3e(1 + 5% N
dt db dn db ‘dt" dn
5. Prove that — » — = o
rove that o g T T ds ds~' S ds ds =0
6, Prove that r”’ = —« -+ @ ~"7«b, where the primes

mean differentiation with respect, toare length.

7. Prove that the shortest};diétance between the principal
normals at consecutive poings #t a distance ds apart (s measured
along the arc) is ds p(p? -{\7‘2)_*

8. Find the curv Qte and torsion of the curve
z = afu — smx y = a(l — cos u}, z = bu

9. For a plane feurve given by r = (01 + y(#)j, show that

x\"
7\ y - yx

Nl “Ti@+ T
10\ Prove that (H't't") = «° js (T)

\11 Show that the line element ds? = da? + dy® + dz* — ¢ di?
remaing invariant in form under the Lorentz transformation

5— Vi

"= ey
y=7
2 =2

I — (V/chHz

T = (el
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V, ¢ are constants. The transformation ¢ = ir, ¢ = V1
leads to the four-dimensional Euclidean line elemoent

*

ds? = da? + dy® + dz? + dr?

12 fo® = 22(s), 0 = 1,2, . . ., n, represents a curve in an
n-dimensional Fuclidean space for which
ds'l — (dml)E + (de)Z + P + (d:ﬁﬂ' e ”\

define the unit tangent vector to this curv e, lhis definition hting a
generalization of the definition of the tangent vector for‘ﬂﬁp case

d2 ar .
n = 3. Show that the vector de, a=12 .. n, is normal
: s

\

to the tangent vector, and define the unit p{mmpql normal ny
and curvature x; by the equations

dz> di= 'x:\\‘:
d82=E§-="&:\mg’ a=1,2...,n

N/

dn o\
Show that dsl ra=1,2 o&3%, n,is normal to nq and that

L

d?’t]_ ""',

E & Pt Defite the second curvature g2 and unit
a=1 .
"’\ dn,® :
nhormal n, by ¢ \b\e equatlons j— = —wt* + kgns®, o =1, 2,
s

.y n; and show that 2% 18 normal to 2 and . if g == 0,

Contlnue NKVthis manner and obtain the generalization of the
Frenetd8ertet formulas,

Kpt}'undamental Planes,
gHa\principal normal s called

varlable vector to any point in
~ Dto the point 2 on the curve,

) quently perpendicular to th
osculating plane is

The plane containing the tangent
the osculating plane. Let s be a
this plane and let r be the vector
$ — r lies in the plane and is conse-
¢ binormal. The equation of the

(s—1-b=0 (96)

—_—

thThe hnormal pla,l:fe to the curve at P is defined as the plane
rough P perpendicular to the tangent vector, Its equation is
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casity seen 1o be

s—1)t=0 (97)

The third fundamental plane is the rectifying plane through P
perpendicular to the normal n.  Its equation is

- ON
(s —1)-n=20 (98)
N oA\
AN
Problems d
1. Find the equations of the three fundamental planes for the
curve

z = al, y = bi?, z = g:t3

2. Show that the limiting position ;}f\xﬂ}e line of intersection
of two adjacent normal planes is giveiby (s — r) -n = p where
s is the veetor to any point on the, line.

26. Intrinsic Equations of a Curve The curvature and torsion
of a curve depend on the pamt AP of the curve and consequently
on the are parameter 8. “Tet &« = f(s), r = F(s). These two
equations are called thglntrmsw equations of the curve. They
owe their name to the'faet that two curves with the same intrinsic
cquations are Iden%cal except possibly for oricntation in space.
Assume two_carves with the same intrinsic equations. Let the
trihedrals at Y correspondlng point P coincide; this ean be done
by a r1g1imot10n

N0\1>\\~

ay
NS

RN '
O —(tyety) =tiewne + -2
ds

\}.. ;
- (y +My) = Da- (—ty — 7bg) + Mo (=it — thy) (99}
s

d
—(b;+bs) = by -7ne + be -
ds

Adding, we obtain

_ %_.(tl'tz"Fm'ﬂe‘i'bl'bz) =0
s
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so that
t1+ 13 - f11+ 0z ++ by by = constant = 3 (100)
gince at P
C ot =ty n; = N, by = bs

Since (100} always maintains its maximum value, we must have
t; = t;, 0, = ny, by = b so that ir_} = @ Or 11y = I3 locally.
ds ds
Hence the two curves are identical in a small neighboriicdd of
P. Bince we have assumed analyticity of the curveg,\thay are
identical everywhere. . N !

Problems A\ 3

1. Show that the intrinsic equaijions."o}\ﬁ: = a(f — sin 9),
y=a(l —cos8), z=0 are p?+ 5> =20a?, r = 0, where 3 18
measured from the top of the arc of thé’éycioid. '

2. Show that the intrinsic equation Tor the catenary

y = a {e"“+ gy
18 ap = §* + ¢, wheres is measured from the vertex of the
catenary. ~
&

Fre, 88.

27. Involutes. Let us consider the space curve I'. We con-
struct the tangents to every point of T' and define an involute
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as any curve which is normal to every tangent of I' (see Fig. 38).
From Fig. 39, it is evident that

r; =1+ ut (101)
is the oquation of the involute, » unknown, Differentiating

(1{11}, we obtain

dl’l dr
ds; = ds T

where s is are length along I and s, is arc length along IV, Using

(85}, (102) becomes r 'S

|
« N7

dt  du \ ds
— 4+ —t]— 102
ds + ds t dsy ( )\

- (t +wa + d—“t) 2 (103)
ds Jds:

Now t-t; = 0 from the definition of
the involute so that

1+d_u:0 and uw=c¢—s ()
ds g

Ry Fic. 39.
Therefore 11 =1+ (¢ — S)t::é%ﬁa there exjghs an infinite family
of involutes, one involufdfor each constant c. The distance
between correspondipg‘hwoiutes remains & constant, An invo-
v .

Fia. 40.

lute can be generated by unrolling a taut gtring of length ¢ which
has been wrapped along the curve. The end point of the string
generates the involute (see Fig. 40). What are some properties
of the involute? v
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nn=r-+{c— Nt
fr, dr dt ds
ty =—-—=|= —_ — — 1t | —
! dsq [ds+(c s ds ]dsl
ds
—(c——é)x-cgln

Hence the tangent to the involute is parallel to the corresponding
normal of the curve. Since t; and n are unit vectors, wémust

d A\ ¢ .
have (¢ — ) PR The curvature of the i};l\ir?)h\tte is

dsl @
. dt d ~it — "
obtained from — — kM = 41 @- = (—— Tbﬁ)f “Hence
dsy dsdsy, (e — N
: A\ N
T : \ & 2
1NN T (105)
A ke — 8)?

28~\Evolutes. The curve 1"
whose tangents are perpendicu-
. oJar to a given curve is called the
&) &volute of the curve. The tan-

0 A3 gent to I* must lie in the plane
Fre. 41, A, ofbandnof T since it is perpen-
\"\ dicular to t. Consequently

87 =14 oum - ob

is the equation, Of the evolute. Differentiating, we obtain
N
\dr dr tn db  d d ds
e fer aa “3  gu “y
HE 2 =\ T g AP b)

\}; ds ] ds,

O L L
“;;\ =[t+u(—xt—rb)+wn+@n+@b s
:"{‘; i : ds ds | ds;

.\ w4

N\ "Now t - t: = 0, which implies 1 — 2x — 0 or u -=.-1~ = p. Thus
K

dy du dé
th=|{- had for o+ Z2Y 0 |2
1 [( T+ ds) b. =+ (u- -+ d.s) n] s

Also t; is parallel to It =1 =un <4 vb (sec Fig. 41). Therefore
(dv/ds) — ur  (du/ds) 4+ or

u v
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or
ue' — v’ d A v
T = " - n'-—
_ u? + ¢? ds & %
Therefore i
H #
¢ = f rdg =tan—'-+¢
0 u
and v = p tan (¢ — ¢} since w = p. Therefore
r,=r -+ pn+ ptan (p — c)b (1063,
and again we have a one-parameter family of evolutes .gn\the
curve I'. N
Problems ‘R }g

1. Show that the unit binormal to the invqluf}e"is

b, =

b — \
bt a0
(e — s).!“'ﬂl"

2. Show that the torsion of an fuyolute has the value

= (G —3- (6t + (e — 9
3. Bhow that the "ﬂncipal normal to the evolute is parallel
to the tangent of tHe eurve T'.
4. Bhow th at‘thﬂe\rat-io of the torsion of the evolute to its curva-
ture is lan (p,S0c).

" 5. Show'tlal if the principal normals of a curve are binormals
{equal v&étors not necessarily coincident) of another curve, then
efx? %\:m) = x where ¢ is a constant. .

JJ“-'\On the hinormal of a curve of constant torsion 7, a point

A fakon at o constant distance ¢ from the curve. Show that the

\“binormal to the locus of @ is ‘nclined to the binormal of the given

curve at an angle
ert
—1 e
(e + )

7. Conzider two curves which have the same prineipal normals
{equal vectors not nceessarily coincident). Show that the tan-
gents to the two curves are inclined at 2 constant angle.

tan
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29. Spherical Indicatrices
{a) When dealing with a family of unit vectors, it i often
convenient to give them a common origin and then to consider
the locus of their end points,
This Iocus obviously lies on a
unit sphere. Let us now consider
the spherical indicatrix of the tan-
gent vectors to a curve r =(s).
The wunit tangent vectors" are
t(s) = _d_r Let r; = t. f:}ﬁ\wn
ds ! O
dn dt&:&‘" dS
= RS L 88
ds; WHsts, sy
Fra. 42. Thus the tz}ngent to the spheri-
cal indigirix T is parallel to the
normal of the curve at the correspanding point. Moreaver,
v/ \4

ds P\ .
1= KE? ti = n. Let ug now findthe curvature &1 of the indi

*3

t1=

catrix. We obtain N

dt, I Sdn ds 1 :

S T kil = — —— = T a

ds, I\Q ds ds,- x( .x )
and O

\\ ) &2 v 72
A K = ——
\ ¥ 2 K

&
® Tk}e\'ﬁpherica] indicatrix of the binormal, r, = b, Differ-
entiating,

A dri  db ds ds
«.\ ) t = — = — — = —
A\ ! ds;  dsds, O ds;
M\:'}fhérefore
\/ ds q
T— = =
d81 an t}_ In
Diﬂ’erentiating,
at . — dnds 1
ds o dsds; . 7 (=#t — m)
and .
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‘Problems

1. Show that the torsion of the tangent indicatrix is
__{dx/ds) — k(dr/ds}

_ - «{&? + 7%

2. Show that the torsion of the binormal indicatrix is

_ r(dx/ds) — x{dr/ds)

T1

= 7(x* + +%) S\
3. 1ind the curvature of the spherical indicatrix of thg Q’fhﬁipal
normal of 4 given curve. \/

> 30. Envelopes. Consider the one-parameter .)."ai:ﬁ'itly of sur-
faces F(x, y, 2, ¢). = 0. Two neighboring surfz}c@s'.&re
Flx,y,2,¢c0 =10 ’
and Flx, 3,2, ¢ 4 Ac) = 0. These two‘lg‘}ffaces will, in general,
intersect in a eurve. But these equétions are equivalent to the
equations Flx, y,2,¢) = 0and D )
Fia,y e+ A= Fe,9.509 _ g

? :’; ’ﬁﬂ

~

where Ac = 0. As Ag> 0, the curve of interseetion approaches
2 limiting positiqn{zéfg&led the characteristic eurve, given by

2‘. F(m,y,z,c)=0
\&~ F@pn0 _ (107)
P\ dc

~&

Eri“h“ ‘e determines a characteristic curve. "The locus of all

théée curves [obtained by eliminating ¢ from (107)] gives us a

...\:"B.Zili‘face called the envelope of the one-parameter family. Now
) tousider two neighboring characteristics

. an,ypz!c)
Fl@,y,2,¢) =0 —-(‘373‘*=0

and (108)

| BF(ny!z:c+Ac) i
Flz,y,2,¢+ ac) =0 -—-—'——EE—'_'_"”O

which, in general, intersect at a point. The locus of these points
is the envelope of the characteristics and is called the edge of
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regression. The edge of regression is given by the three simul-
taneous equations :
Flz,y,2,¢) =0
oF(z, y,2,¢) 0
de B
OFix, y,2,¢)
dct B

(109)
0

Ezample 43.  Let us consider the osculating plane at a poinfid:
From (96) we have [s — r(s)]- b(s) = 0. If we let P VALY, We
obtain the one-parameter family of osculating planes givon by

F@y, 28 = Is — 1] -b(s) =0

where s is the parameter and s = zi 4+ 4 + z}g‘\ 0

of dr db . .
Now s = — s +b + (S - I‘) - -(E-g = ’(:s.\\._‘; r) - 8, and Settlng
af 4

e 0, we obtain (s — 1) -q = 0. Sbhis locus is the reetifying

P : g .
plane. The intersection of f =0 "and a—f = 0 obviously yiclds
. N s

the tangent lines which are,jl:}ile'characterist-ics. Now

orf A : d
= —ton @ (et — ) s - Honl
.\\‘v 8
N\ 2
It is easy to vexify that s = r satisfies f = q_ % = {, so that

< ds  Js?
the edge oxf.{egression is the original eurve r = r(s).

A developable surface, by definition, is the envelope of a one-
paramet ¥ family of planes. The characteristics are straight
Iinf}s','; ealled generators. We have seen that the envelope of the

LQsoulating planes is the locus of the tangent line to the space
\éurve I. Ingeneral a developable surface is the tungent surface

of a twisted curve. A contradiction to this is the case of a
cylinder or eone, ' '

~431. Surfaces and Curvilinear Coordinates. Let us consider
the equations

r = x(u,v)
¥ = ylu, v) (110)
z = z{u, ) o
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where u and v are parameters ranging over a-certain set of values.
If we keep » fixed, the locus of (110} is a space curve. For each
v, one such space curve exists, and if we let  vary, we shall obtain
a locus of space curves which collectively form a surface. We
shall eonsider those surfaces (110) for which #, ¥, 2z have continu-
ous second-order derivatives. Hquation (110) may be written

r(u, vy = z{u, )i + ylu, n)j + z(u, vk (111)

where the end point of r generates the surface. The curved\
obtained by setting v = constant are called the u curves, and
gimilarly the ¢ curves are cbtained by setting % = cp;r{'staﬁt.
The parameters u and v are called curvilinear coordinates, and
the two curves are called the parametric eurves. s‘

~ 32, Length of Arc on a Surface. If we move“fgom the point ¢
to the point r + dr on the surface, the distancs.ds is given by

RS
a a _\t DT

ds® = dr + dr = —rdu-!——-dv) RY

ou v

P
NS

. or) ar\?
= (‘-31)2 du? —L—’Q o . o du dv -+ (EE) duv?

o R Sou av
or . ’
ds? =m§f:£lu’ } oF du.dv + G &b (112)
where ¥ \\ )
fdr\? ar ar _ (ar 2
<4 —1: = — G =\
E\ﬁ (ém) F gu oy v

".\..
Equaj{ci \'(ilQ) is ealled the first fundamental form for the surface
r=¥, 0. In particular, along the u curve, dv = 0, so that

~O (ds)u = VE du
. 113
\ and similarly (113)

(ds), = V& o

Now 2_1' and o are tangent veetors 0 the u and v curves, 5o
v

%
that the parametric curves for

8
onlyif L. _F 0.
Jdu v

m an orthogonal system if and
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Ezample 44. Consider the surface given by

I =17snfcoseid rsin @ sin ¢J+reos 8k, r = constant

Differentiating,
ar . . . .
56:?0036(;03¢1+r005651n¢1 —rgin 6k
ar . . . . * N\
6—=—rsmesmgo1+rsmﬂcos;a] X
@ A o
and . R,
N
or\? or or AR
E:(._) =1 F=—.—x=y Gz(—é)‘::?‘gﬁmge
a8/ ~ 7 39 3, Aoy

N\
80 that ds? = 72402 1 2 ginz g de® and thal@edrves are orthog-
onal to the g-ecurves. Of course the surfacéis a sphore.
‘33, Surface Curves. By letting én}l v be functions of g
single variable ¢, we obtain O

r = rlu(l), ¥(1)] (14)
which represents a curve on tlfe;sl'lrfa,ce {1 13'). Along this curve,
or du  3rdy N
=\ao +——Jdt dri i ‘hen du
dr (au 2 + awdr) U 15 completely determined when
and dv are specified, £0'that we will use the notation (du, dv) to
specify a given dii‘e&bﬁén on the surface. Now consider another
P & d
curve such thabbr = <= 5, += bv, where du and sv are the
N ou o
diﬂ’ercntiaflthé,nges of u(?) and »(8) for this new curve. Now

%dr Ot = B du du - F(du 8o - dy Su) + Gdv sy (115)

sg\ﬂiﬂt two curves are orthogonal if and only if
. \¥4

\‘3 Edu&u—f—F(dqu-l—dvﬁu)—}-deBv=0
or
. oy dv dv v
E+r(Z 4o oy 11
+ (6u+du)+Gdu6u 0 (116)

If we have a system of curves on the surface given by the differ-
ential equation Plu, v) du + Qu, v) 8 = 0, the differential equa-
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tion for the crthogonal trajectories is given by

P de G’Pdv
E—]—F(—@+c—£a) Qdu =0 (117)
e O L E.
since Pl A

Problems

1. Tind the envelope and edge of regression of the one—param‘-\
eter family of planes # sin ¢ — y cos ¢ + 2 tan 6 = ¢, Wher€ G\IS
the parameter and 8 is a constant. , N\

9. Show that any two » curves on the surface .\ .7

=yeospiusginyjt (v—i—logcos‘@}k

cut equal segments from all the « curves. .

3. Find the envelope a,nd edge of regre@on of the family of
ellipsoids ¢ (— + z) +—-=1 Where \IS the parameter.

4. If ¢ iz the angle between the two directions given by

Pdu® + Qdudu+Rdv ={

ghow that tan @ = H(Q2 4PR)§/(ER FQ + GP), where
e e
o 3?) ¢ '\s.:

5. Prove that“the differential equations of the curves which
bisect the angLes ‘between the parametrxc curves are

27 VEm-VEw=0
andﬁdwv’_dwo

6 ‘Given the curves uy = constanﬁ on the surface r = ui + iy

o \Fmd the orthogonal trajectories.
7. Show that the area of a surface is given by

[ e — P2 duds

. o ar
Y84, Normal to & Surface. The vectors -a_{; and -; are tangent

to the surface r(u, ») along the u and v CUrves, respectively.

C'onsequenﬂy’ gf x gf is a vector normal to the surface. Note
w8y :



<
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that'§ need not be a unit tangent vector to the u curve since the
u :
parameter ¥ may not represent arc length. - Bince

(ds)y = VE du

a necessary and sufficient condition for % to be arc length is that
E =1. We define the unit normal to the surface ag

N
_ (3r/aw) x (ar/av) "
"7 [(or/ouy x (ar/00)| & G8)

N/

/35. The Second Fundamental Form. Considez.iafﬂ"‘:t-he Manes
through a poing P of the surface r = r(u, v) ﬁn@'@h contain the
normal n. These planes intersect the surfded in a family of
curves, the normals to the curves being parglle] to . We now
compute the curvature of any one of thede)eurves in the direction
{du, dv). Let ds be length of arc alqn’g}his curve. Now

(0 _ xdu arde
- ds dwds | ovds

Therefare N _
Pr_dt o o duds | 3% fdn\?
— = =kt = — A=~ — - — 1=
ds?  ds 6‘1\&2,“ ds du dv dsds * \ds

o o CAr do ardw . .

XN\ sre’u | oraw (119)
O - duds® - duds® T

and ’f\ d

4 N fduN\2 atr \ du do
" = n = L - - P
' ..\’\*:Q‘n ) .(n du? (ds) + 2 (n_-_: u 6‘1}) d's ds .j.\ e

N R R SR YA
;inc 0 ir ot 0 Th f L T
an.— = - — =
ou "% g =0 Therefore .

_edul + o dudo + g dv?
o -

n

. =edu2+2fdudv'—!—gd}uﬁ
" Edu?+ 2F dudp + G dp® -

(120)
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where we define
ar o &
. =nn- _— » —
ou? f ou oy g=1a op? (121)

'The quantjty ¢ du® + 2fdudv + ¢ dv?is culled the second funda-
mental form.

Now consider any curve T on the surface and let its nurmal be
n, at a point P, the dlrcbtlon of T being (du, dv) at P. Let T' be

the normal curve in thes sa.me dlrectlon (du, dv) with normal n at
P (Fig. 43). We hgm\

N’

: ry b of
;\nl-:cosﬂ—n-——n—'
:ws ¥ K

since n - {2 "« n for two curves with the same (du, dv) [sec

(119)], \’\herefore

: m\" 4 . . T Ry
“;.\\ Ccos @ =—
(‘80 that . _

k= ka8ec 0 (122)

JE———

This s Meusnier’s theorem.

¥'36. Geometrical Significance of the Second Fundamental
Form. We construct & tarigent plane to the surface at the point
(o, vo). What is the distance D of a neighboring point

r(uo + Au, t’o + Aw)
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on the surface, to the plane? Itis D = Ar-n. Now

. ) ar or
t(us + Au, vo + Av) = T{uo, vo) + (6—; Au + 7 Ai‘))

P /a%r d°r d%r
_—_ 2 — A — Ap? ..
+2!(61&‘:\'1"’ e At ”) ™
from the calculus. Consequently
: O\
1 d°r 9% %
= . = — . — 2 . Anp v i
D=Ar.n m(n auzAu + 2n auaﬂAu b+n’8@} ;)
. { ’\
except for infinitesimals of higher order. Thus A\
2D = edw® + 2f dudy + g df ¥ (123)

Problems N
1. For the paraboloid of revolution\ ~

r=uwcosyitwsmovj+ uk
L . .

show that B = 1"+ 4u’, F 20,¢ = w2, ¢ = 2(1 + 4u)~ f = 0,
g = 2u*(1 + 4u¥™% and find the normals to the surface and the
normal eurvature for the direction (du, dv).

2. What are the mormal curvatures for directions along the
parametric curvds? ™ _

3. Find the #econd fundamental form for the sphere

r 2% sin o cos @i+ reinfsinegj+reosbk
N . :
T = gofistant.

4Show that the curvature x at any point P of the curve of
inbersection of two surfaces is given by
oS

»\; v k 85in? @ = g2 4 g2 k%2 cos 8

where i, x; are the normal curvatures of the surfaces in the diree-

tion of the curve at P, and 8 is the angle between theirnormals.
8. Let us make a change of variable 4 — u(d, 8), v = v(4d, 7).

Show that X, F, @ transform according to the law
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pop R p (Rl R g
dti a7 du 0F O oF aa a7

- du\? du Oy . 61:)"'
4 =8l—= 2F — — —
(65‘) + o o¢ +@ (61_.1

and that B du? + 2F dudy + G dvo? = E da* + 2F da 45 + G do*.
Also show thas

| fauN  _,dude (69)2] N\

& = —+ R A — — -
¢ o -_g (aﬂ) + fau" dit Ty i, ’\‘\~
. [ ouau (au d O au) dy avi’\ K
P opjelltUy (ol X S
T=Fsam " \aam Tona) " oud

[ /a2 du v (Bv)g] K7,
TR [ gr b % ZY L@
! —f’(aﬁ) T o 5w TGl

“37. Principal Directions. From (120) weHave

(F — ¢ dut -+ 2F — f) du do Gl — g) do? = 0 (124)
or (O
A du? 4 2B dwdv'+ Cdv® = 0
This quadratic equation h):;m;é: two directions (du, dv}, (8u, 8v),
which give the same yglye for «,. These two directions will
coincide if the quadratitséquation (124) has a double root. This
is true if and on]y\ii\“'

B — AQR (e — )F = (08 — )G —9) =0

or b
WHEYEEG) + kalel + gE — %F) + (ft — eg) = 0 (125)
NS
O\ B
Mareover, we have du = — B and # . _ZifB - AC=0,
AN dv A du d
s
(kaBE — €) du + (K F — ) dv =0 (126)

(6F — f) du + (G — @) dv =0

The solutions of (124) give the two directions for a given_ Kn.
When «, is eliminated between (124) and (125), the two directions

coincide and satisfy

(Bf — Fe) dup + (By — Ge) dudy + (Fg — GHdv* =0 (12D
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The two directions, solutions of (127), are called principal diree-
tions and are the only ones with a unique normal curvalure, that
is, no other dircetion can have the same curvature. The normal
curvatures in these two dircetions are ealled the prineipal curva-
tures at the point. The average of the two prinecipal curvatures
is

ed + gF — 2fF
H=—>->“"" =" g
2(EG — F?) @28)
.\:\’
which is obtained by taking one-half of the sum ofz the roots of
(125). The Gaussian eurvature X is defined as $he produet of

the curvatures, that is, (¢

2 — *
K = F{é = e‘:{:\\w (129)

A

A line of curvature is a curve avhose tangent at any point has a
direction coinciding with aiﬁjincipal direction at that point.
The lines of curvature are'obtained by solving the differential
equation (126). The curvature of a line of curvature is not a
principal curvature sinve the line of curvature need mot be a
normal curve. \

Ezample 45. - ‘I\Jet us consider the right helicoid

3

ONY r=wucoseit usin ej T+ cpk
xt\n’
Wel'@“
O
af:’, " = - T . . L3
,..\37=(308(,01+smg01, .= —usineit uwcosej4 ck
P\ FU @
N 3%r L .
— = = —ginei+ e
aur , 94 o0 SN @1 + 08 ¢ j,
o' i— usinej
T —UC0Eel —
dp? ¢

Hence

ar\? d ar - 2 ’
E=(a;) '—_-1, F'_‘—-—"—O, G=(a—rv) =‘u2+|‘:“

T du 3o
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Also

(8r/du) x (9r/d¢)

| dr/ou) x (9r/dp)|

= (csinei — ceos o + uk)(? -+ ud)?

a°r &r _
€ =1I- 62:0’ f=n-aua¢=—c(c fuﬁ)*
0%
g=n-5 =0 a
Equation (125) yields O
'S
—{(u? 4 M F M+ W =0 (W
whence N N
¢ L& 4
tn = & o o O
. i H—E( C":\\i ¢ ):0 and
The average curvature 18 4 = 2 m W I o )
O =

K o ——— The differential
the (Gaussian curvature is K (1? + ¢)?

equation (126} for the llnes of“curvature hecomes
—a(e® + u?{"ﬁ' du2 1 efe? 4 ud)t do? =
80 that

\v
do = % (2iu °;\ and qo=i10g(u+m)+“
c WU

N4
and the lines'of curvature are given by

T —\;;'\t’:;s [+ log (u + Va2 + ¢?) + oli + usin ¢ + ook
\

N Referrmg to (126) for the two prinecipal directions, we have

\"\)u

o w_ B
du | du Fg - Gf (130)

dv & _ Ef~F3
dusu  Fy -Gf

Substituting (130) into (116) we obtain
Eg—Ge) fo‘Fe)zo
— = G\w /=
BT (F g — Gf * g — Gf

80 that the principal directions are orthogonal.
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Now let us choose the principal curves as the paramoetric lines,
Thus % = constant, » = constant are to represent thoe prineipal
curves. These two curves salisfy the equation dudy — 0, so
that from (127) we must have

Ef — Fe = ()
g —@QGf =0
Eg — Ge ¢

N
From these equations we conclude that A
ne

g — Ge) = gfE — fod = Feg — eFy S
and F(Eg —Ge) = 0, sothat f = F = 0. W hve shown that
& necessary and sufficient condition that th(liiies of curvature be
parametric curves ig that )

F=F =0 (131)
ProBlems
1. Find the lines of cur\:a,tﬁre on the surface

W

x=a(u+y)}j:’:; ¥ =bu— =

2. Show that the ”prifléipa.l radii of curvature of the ri ght conoid
T=ucosy, y =absino, z = fu) are given by the roots of

FRZ U 4 5 — e = g

3. The.\m:;rface generated by the binormals of the curver = r{s)
18 gived by R = r + ub. Show that the Gauss eurvature is
K =lev/0 + ') Also show that the differential equation
o,ché lines of curvature is

»\“\ —r2du? — (K + xrtu? +%u) duds + (1 + r2ur ds? = 0
3
38. Conjugate Directions, Let P and © be neighboring points
on a surface, The tangent planes at P and @ will intersect in a
straight linel. Now lot ¢ approach P along some fixed direction.
The line I will approach s limiting position [, The directions
P@ and ¥ are called conjugate directions.
\ge now compute the analytical expression for two directions
to be conjugate. et n be the normal at P and n + dn the
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g ar ar .
normal at @, where dr = PQ = o du + P dv. Let the direc-

, ar ar . .
tion of I’ he given by &r = rw Su 4 ™ sv. Bince dr lies in both

planes, we must have ér-n =0 and &r-(n + dn) = 0. These
two equations imply ér-dn =0, or

a e
(33 B+ 9’.' 50) . (Q’.l du + -—ndy) =0 {132)8
au o A o

£ \..

Expunding, we oblain
o on on or an) ]
— dv
(c?u 61}) uﬁu—i—[( a)&vdu+(u
¥ (‘” am‘)a d =0 (133)
oy /

D
Jr
Nown . P 0, so that by dﬂerentlatmé we see that
(2

on dr _2_1' -0
u du LN 0wt
which implies )
o et o
B du?
Similarly N N\ )
ZTon o _om T .-
xﬁ\“" dv du  du
:"\.‘.
,\w' .‘?_n . .a_r = —¢
o\ dv v
m\?f};that (133) becomes
3
N - (134)

edu6u+f(du6v+du&u)-l*gﬁ”d”—o

I the direction (du, dv) is given, there is only one corresponding
eonjugate direction (du, &), obtained by solving (134).

N‘Ow consider the lines of curvature taken as parametnc curves.
Their directions are (du, ®), (0, ). Equation (134) is satisfied
by these directions sinee f = 0 for lines of curvature, 0 that the
lines of eurvature are conjugate directions.
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89. Asymptotic Lines. The directions which arc scli-conjugate
are called asymptotie directions. Those curves whose tangents
are asymptotic directions are called asymptotic lines. If a direc-

d b
tion is self-conjugate, EE; = i, so that (134) becomes

¢du® + 2f dudy 4 g dv® = 0 (135}

We see that the asymptotie directions are those for‘x\\huh the
second fundamental form vanishes. Moreover, thcn@rmaﬂ curva-

~

ture k. vanishes for this dircetion. £ "«

If e =g =0, {0, the solution of (1{5@ "ig % — constant,
» = constant, so that the parametric curvegiare asymptotic lines
ifand onlyife=g=20,f =0 \

Ezample 46, Let us {ind the lines obcurvature and asymptoiic
lineg of the surface of revo]utlon. z,¥ x4+ y*: Let z = ucosy,
y = usinv, z = u? and QO '

N/
),,
\ g

r—ucq’swl+usmv]+u2k

>
","
.

We obtain \
o\
or \*\_ . ar .. s
5;=cosvl sin v j + 2uk, a:—usmvl—}-ucosm
Do 3 . )
,\, au2= ' -ém=-—smv1+cosu]
w4 3%
\’\\ 5;=-ucosvi—-usinvj
.) o (1/3u) x (9r/a)

[(ar/au) x (ar/ov)|
= ( 2u? cosvi — 2u?sin v j + uk)ul(1 + 4u?)” -

Therefore

dr . ar
e=1n-— = 2(1 + 4u)~, . .
s ~ 21407, F=neo

1

2

9
g=n:— =2l + 4yt



N

N\

ggc. 40] DIFFERENTIAL GEOMETRY 83

gr Or
Also F = Pl 0, so that f = F = 0, and from (131} the

parametric curves are the lines of curvature. The asymptotie
lines are given by du® -4 u?dy? = 0. These are imaginary, go
that the surface possesses no asymptotic lines.

_ Problems

1. Show that the asymptotic lines of the hyperboloid

r=acosSsecﬂzi+bsin€sec¢j+ctan1&k~<\~

are given by 6 + ¢ = consiant. N
2. The paramctric equations of the helicoid arg D

/N

x = u GO5 ¥, y=usinv,\z=cv

Show that the asymptotic lines are th :pzmmetric curves, and
that the lines of curvature are u 2k j" u? 4 ¢t = Aet*. Show
that the principal radii of curvatureare (u? + ee L

3. Prove that, at any point of & surface, the sum of the normal
curvaturse in conjugate dirccﬁ’oﬁs is constant.

4. Find the asymptotic Tihes on the surface z = y sin Z.

40. Geodesics. The distance between two points on a surface
(we are allowed fém’re only on the surface) is given by

Kn du\? du dv (d-v)QT
= — —— ZYila (136
f\:,;‘ﬁo [E (dt) +2 g5 O\ (186)
Amon! :aﬁé many curves on the surface that join the two fixed
p()inp'sxvill be those that make (136) an extremal. Such curves
AR ‘Galled geodesics. We wish now to determine the geodesms.
\FP0 do this, we require the usc of the caleulus of variations, and

50 we say a few words about this important method.
Let us first consider the integral

Qo) i (137)
fp(m, ) 1+y ) de

W‘f’ might ask what must be the functiony = (&) joining the two

points £ and Q which will make (137) a minimum. The re.ader

might be tempted to say, ¥’ = Qory = constant, since the mt‘ew

grand is then a minimum. But we find that y = constant will
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‘not, in general, pags through the two fixed points. Heace the

solution to thiz problem is not trivial. We now formulate a

erty that g{a) = ¢(d) = 0 (S.Ltrl"lg 443,

and for & = 0,

¥
Iy
Y (x, 0/ g
A ¥ (x)
i
1
]
I
!
Q0 a b
Fra. 44,

more general problem: to find
y = y(x) such that

[ iy vy de 138)

is an extremal. The funghion
flx, u, ¥') is given. R\m ylx)
and so also ' (z)\that are
unknown. Lety s y{z) be
that function “Sehich makes
(138) an extremal. Now let

Yz, oy X 4le) + ap(x), where

a 15 rbitrary and,independ-
ent % and ofz) 18 any fune-
{dion  with continuous frst
Oderivative having the prop-
Under our assumption,

J (@ f f, ¥, V') dz (139)
Q
is an exfremal { ori;§3\= 0. Consequently 4 =0or
N\ atla=0
o] 3 '
2oz = (f + ¥ ’)dx=0 (140)
N datl,_ o e \dy 3y :
of  afe¥ | of o¥’ af of
« Vax 30 e o7 T v ?
o _o o _ o
a¥  ay oY oy

We now integrate the right-hand term of (140) by parts und

w]b L= (6‘? pde =0 (141)

obtain

r

o
6y¢

af

N

dy'
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Now ola) = »() = 0by construction of ¢(z), so that

j;b L%C — Ed:;(af)] de =0 {142}

Now let a3 assume that i _ 4 (af) is continuous. If
dy dz

o d {' of
&y R ay’
will be pusitive or negative at some point. If it is positive at
2 = ¢, it will be positive in a neighborhood of z = ¢ from cbn—
tinuity {sce Sees, 42 and 43). We can construct ¢ 0 be pasntlve
on ihis inferval and zero elsewhere. Then “.s' N

) is not identically zero on the interval (g, b), it

PlE-2(@)]ee>ad"

¢o that woe have a contradiction to (14 )~ Sansequenﬂy} the
function of y(x) must satisfy the EuLer-Lagrange differential

equation o\ ~
4 (EJL)L A _ g (143)
dz \3y ay

S
I f =7y, \&-‘e.c@;} immediately arrive at an integral of
(143). Let us copsl

d o of % g d (3f )
- N EC A s — —
di / ,gm’}y’ ayy + ay’ v &y’ Vi
&

N _y [ﬁ _ 4 (Ei)] —0 from (143)

ay dz\dy
Heiige
’"\‘,z

f — ¢ — = constant ‘ (144)

is an integral of (143) if f = f(y, ) ey
YExample 47. To extremalize (137), we have f = (1+9)%
which is independent of z. From (144),

£l

f—v é—?i, = gonstant =
Y
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so that
2% 2 ' y’ — 1
(1+y) -y (1+y,ﬂ)a.-'a
and
=+ Va1
and finally

y=+Vai—1z+8 A145)

The constants « and g are determined by noting that thé Sstraight
line (145) passes through the two given fixed pointgs

det dg2\ s da»
Example 48. Iff——-f(xl,:t:z, I d_t,,'?:t_’s R )s

then j; :I f di is an exiremal when the x=(t] ﬁa}isfy

.,‘\\) :
afay_HY
dt( ) =9 (146)

ai=/ MNlax
™
ey dae .
fore=1,2...,nwih¥s = a The superscripts are not

powers but labels that Eﬁéble us to distinguish between the vari-
oug variables, The":fﬁormulan (148) are a consequence of the fact
that f fdt t ‘b(, an cxtremsal when z(f) is allowed to vary
while we keep all other 27 fixed, § =1, 2, ... ,4—1,{+ 1,
., TN
Letins ‘now try to find the differential equations that u(f) and
v({kfhust satisfy to make (136) an extremal. We write

,~;~.\ s = [ (e 4 2Fu + G dt
:00\.‘0
\\ * and apply (146), where ! = v and z? = v. We thus obtain

af af
147
dt (au ou =0 (147)

d af) of
- 148
at (61‘.1 av =0 (148)

where

f = (BEu? 4 2Fw 4 Q%) = %i, E = E(u,v), ete.
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Now

oE
—-—E—‘Zuv——l—v oG

of  Eit Fi of
o f du 2f

so that (147) becomes

d (Eu + f«f:s) _ 42 A 200(0F /du) + $(8G/0u) (48]~
dt\ ds/di 2 ds/dt N
and 1f we choose for the parameter ¢ the arc length s, thc.u ic 8
and E = 1, go that (149) reduces io . :‘35
——E +F _.1_(2__+ ﬂ___i;“v:zaG
( T ) u 1 ) o
while samﬂarly {148} yields ‘O {150}

N N
_.1 ég‘\" B_I: 26‘_(_;)
(Fu+Gu) H(ug av —[—2@590 + & P

In Chap. 8 we shall derw ehy tensor methods a slightly differ-
ent system of differential eql‘latlon.s
Exgmple 49, Conb@r the sphere given by

r = asm\f?\eds pi+a gin @ sin @ + @ cos 8K
where ds? = g%d9? + o®sin® @ dga so that E = a, F = 0,

A/
x,\:“: G = a?sin? g,
and §~\}~
ﬁ——li}:a_lj—g=@__?§=0, —a—~azsln28

di(a n? 0 @E) _ (151)

Integrating (151) we have sin® @ fl—"p — constant. We can choose
s

.our coordinate system so that the coordinates of the fixed points
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de
are ¢, 0, 0 and q, 8, 0. Hencesmzﬂd——o d——O go that
8

= 0. IHence the geodesic is the arc of the grea-t circle joiuing
the two fixed points.
Example 50. Let us find y(z) which extremalizes

fy@ + ¢ d

Since f = y(1 + ™ = fly, v), we can apply (144) to {Obtain
a first integral. We obtain (1 + 5} — J Yyl + } N o
and simplifying this expression yields ¢ = + (ce?g{“\ 1“ A
further integration yiclds ay = cosh (8 + oz). « These are the
curves (catenoids) which have minimum surf gm,qéé"f)f revolution.

2¥7)

o\
Problems \/

1. Find the geodesics on the cllipseid/of revolution
22 —|— z2 ,"\" -

SRl

»’,
‘5

Hini: Let ¢ = ucosv, 2 —-’u gln o,

2. Bhow that the dlﬁerehtla.l equation of the geodesies for the
right helicoid z = wcos v, y = uginy, z = cvis

du N1 - . -
EAN 7t = [(u? + (w4 e — BN, h = constant

3. Prog’é;"that the geodesics on g righf cirgular gylinder are
helicgs i\ >

%\Show that the perpendlcular from the wvertex of a right
tlar cone to the tangents of a glven geodesm is of constant

* l}ngth
5. Find y(z) which extremalizes [’ [(1 + y)/)]t d.



CHAPTER 4
INTEGRATION

41. Point-set Theory. In geometry and analysis the student \
has frequently made use of the concept of a point and of (the
notion of o zet or collection of elements (objects, points, nuthbers,
ete.). W shall not define these concepts, but sha]l,tgldé their
notion as intuitive. We may be interested in the pqi}xts'subject
to the condition 27 4 y* < r*. These will be the-points interjor
%o the tirele of radius r with center at the origha\¥We might also
he intcrested in the rational points of thg'Qné-dimensional eon-
tinuwm, For convenience, we shall condider only points of the
real-number axis in what follows, Abgnset of real numbers will
be cailed a linear set. The integefs form such a set, as do the
rationsls and irrationals. Ali\the dcfinitions and theorems
proved for linear sets cansééfsily be extended to any finite-
dimensional space. ~N

Closect Interval. The\éet of points {z} satisiying a sz=b
will be ealled & clo t{irfterval. 1f we omit the end points, that
is, consider thosé\x that satisfy a < @ < b, we say that the
interval is opgi) (open at both ends). Tor example, 0 £z =1
is a cloged interval, while 0 <z < 1 is an open interval.

Boundgd Set. A linear set of points will be said to be bounded
if thez;&eﬁists an open interval sontaining the set. 1t must be
Emp]i‘asized that the ends of the interval are $0 e finite numbers,

Which thus excludes —®, +=.

\\ ) An alternative definition would be the following: A set of
numbers § i bounded if there exists a finite number N such that
—N <z < Nforall zin 8. : .

The set of numbers whose squares ar¢ Jess than 3 is certainly
bounded, for if * < 3 then obviously _g < g < 2. However,
the set of numbers whose cubes are less than 3is unboundet?, for
2% < 3 is at least satisfied by all the negative pumbers. This seb
is, however, bounded above. By this we mean that there exists
& finite number N such that z < N if 2° < 3. Certainly N = 2

89
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does the trick. Specifically, o set of elements § is bounded abaove
if a finite number N exists such that z < Nforallzin §. Lot the
student frame a definition for sels bounded below.

We shall, in the main; be concerned with sets that contain an
infinite number of digtinet points. The rational numbers in the
interval 0 < 2 <1 form such a collection. Iet the reader
prove that betwcen any two rationals there exists anp\t’;hcr
rational.

Limit Point. A point P will be called a limit point, OB set S
if every open interval containing P contains an infinitenumber of
distinct elements of 8, For example, let 8 be thg.sef' of numbers
(1/2,1/3,1/4, . . ., 1/n, .. .). Tiis easy o 'werify Lhat any
open interval containing the origin, 0, contaiﬁqé an infinite num-
ber of . Tn this case the limit point O dwes not belong to .
It i3 at once apparent that a set 8 con@a@ing only a finite number
of points eannot have a limit point, { &

Neighborhood. A neighborhood'ef a point is any open interval
containing that point. W W

Interior Point. A point vJL"?}}ié.“e.sJid to be an interior point of a
set 8 if it belongs to S al}d'a'_f % neighhorhood N of P exists, cvery
element of N belonging$6'S. If § is the set of points 0 < & = 1,
then 0 and 1 are notgdnterior points of S since every neighborhood
of 0 or 1 contains(Points that are not in 8. However, all other
points of § are atcrior points,

Boundary ©pint. A point P is a boundary point of a set S
if every geighborhood of P contains points in S and points not in
S. IfSiytheset® £ 2 < 1, then 0 and 1 are the only boundary
points) “ A boundary point need not belong to the set. 1 iz a
beundary point of the set § for which & > 1, but 1 is not in S

Bince 1 F 1.
N\

Complement. 'The complement of a set § is the set of points
not in 8. The complement ('(8) has a relative meaning, for it
depends on the set 7 in which § is embedded. If S , for example,
is the set of numbers —1 € 2 < 1, then the complement of S
relative to the real axis is the set of points lo| > 1. But the
complement of —1 = » £ 1 relative to the zet —1 Srx=lis
the null set (no elements). The complement of the set of ration-
als relative to the reals is the set of irrationals, and conversely.

Open Set. A set of points S is said to be an open get, (nof to be
confused with open interval) if every point of § is an interior



Suc. 41] INTEGRATION 91

point of S. For example, the set S consisting of peints which
satisfy either 0 < & < 1 or6 <z < 8is open.

Closed Set. A set containing all its Iimit points is called a
closed set. For example, the set (0, 1/2,1/3,1/4, . . ., 1/n,
.. ) is closed, since its only limit point is 0, which it contains.

Problems

1. What are the limit points of the set 0 < = <17 Is thel
seb closed? Open? What are the boundary points? N
9. Repeat Prob. 1 with the point z = i removed. A\
3. Show that the sct of all boundary points (the beundary)
of a set 3 i3 closed. )
4. Prove that the set of all limit points of » sef $is closed.
5. Prove that the complement of an open set)is closed, and
conversely, : N
6. Why is every finite set closed? O
7. Prove that the set of points cqmijmn to two closed sets 18
closed. The set of points belonging 6 both S, and S; is called
the interscetion of Sy and Sy, Wy'r,b’tb‘n 8: N S
8. Vrove that the set of pobntd which belong to either Sior 8.
is open it 8, and Ss are opets This set i called the union of 8;
and 8., written S; U Sz.(
9. An infinite unién of closed sets is not necessarily closed.
(ive an example WEG verifies this.
10, An ix1ﬁnite:iﬁtersection of open sets is not necessarily open,
Give an example which verifies this.
Sﬂ-}”?‘em@?}“ A number s is gaid to be the supremum of a set of
points SG§/
L ann S implies ¢ = ¢
% ¥ < s implies an # in S such that & >
\H‘; Example 51. Let S be the set of rationals less than 1. The.n
1 is the supremum of S, for (1) obviously holds from the defini-
tion of §, and if ¢ < 1, it is possible t0 find a rational r < 1 such
that ¢ < 7, so that (2) holds. We give a proof of this statement
in a later paragraph.
Ezample 52. Let S be the set of rationals whose squares are
less than 3, that is, S|a? < 8. Certainly we expect the +/3 to
However, we cannot prove this

be the supremum of this sef.
f jrrationals. We overcome

without postulating the existence o



92 VECTOR AND TENSOR ANALYSIS iHee, 41

this by postulating

Fvery nonempty set of points has a supremun:  (152)

Henee the rationals whose squares are less than 3 have a supre-
mum. It is obvious that we should define this supremuin as the
square root of 3.

The supremum of a set may be + = as in the case of the set
of all integers, or it may be — « ag in the case of the null s

The infemum of a set S is the number s such that O\

1. zin Simpliess =z . o\

2. I > ¢ implies an z in 8 such that z < ¢ \ by

Ezample 53. Let o > O and consider the sequenm a, 2u, 3a,

., 0, . ... If this sct is bounded, there exists a linite

supremum s. Hence an integer » exists suelnthit re > s — (a/2)
so that (r + 1)a > s + (a/2) > s, a contradietion, sinee ne = s
for all n. Hence the sequence {na} l\iunbounded This i¢ the
Archimedean ordering postulate. s

A

Ezxample 54,  To prove that a rational exists botween any tiwo
numbers @, b, Asgsumed: o =0 By 0,s0 thata — b > (. From
example 33, an integer & eXists such that gla — &) > 1, or
ga > gb 4+ 1 Also an m’teger p exists such that p-1 = “> gb.
Choose the smallest K Thus p > ¢b =z p — 1. Ilence.

\\qa>qb+1 » > gb,
and g > 'p/q > b QE.D,

With tl{e ald of (152} we are in a position to prove the well-
know ‘Wewrstmss Bolzano theorem.
‘EEpery infinite bounded set of points 8 has @ limit poind.” The
.P,T.OOf proceeds as follows: We eonstruct a new set 7. Into T we
M\Z j)lace all points whieh, are less than sn infinite numhberof §. T is
not empty sinee S is bounded below. From (152), 7' has a
supremura; ¢all it s.  We now show that s is a limit pointof S.
Consider any neighborhood N of 5. The points in N which are
less than s are less than an infinite number of points of 8, whereas
those peints in N which are greater than s are less than a finite
number of points of 8. Hence N contains an infinite number of
S, so that the theorem is proved. We have at the samo time

proved that s is the greatost limit point of S. A limit point may
or may not belong to the set,

o
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Problems

1. The set 1/2, 1/3, ..., 1/n, ..., 1, 2 3, ...18
unbounded,  Does it have any limit points? Does this violate
the Weicrstrass-Bolzano theorem?

9 Trove that every bounded monotonic (either decreasing or
increasing) sequence has a unique Timi,

3 Urove that Iim = 0 if |y| < 1. Hint: The sequence,
% ..., 1 ... is bounded and monotonic decreasing fox

r > 0 wnd e = gt O\
4. Show that if P is a limit point of a set S, we can piqk\out 3
subsequence of § which converges to P. K

5. Show that (152) implies that every set has anjinfémum.

6. Show that removing a finite number of elements from a set
cannol aifect the limit points. ’

7. Prove the Weicrstrass-Bolzano theqrgm/for a bounded seb
of points lying in a two-dimensional plate.”

3. Tt the scquence of numbers §ss, « -+ » S - - - satisfy
the following criterion: for any eox U there exists an integer N
such that |pp — 8o < eforn gN 'p = 0. Provethat a unique
limit point exists for the sequante.

9. A set of numbers g said to be countable if they can be
written as a sequence,:tl%{;t- ig, if the set can be put into one-to-one
correspondence with{ghe positive Integers. Show that a count-
able collection of countable sets is countable. Prove that the
ralionals arccgintable.

10. Show ot the sct S consisting of = satisflying 0 S = = 1
is uncounthble by assuming that the set S is countable, the
numhes$ ¥ being written in decimal form.

Thedrem of Nested Sets. Conpsider an infinite sequence of

...\n(:{ﬁémpty closed and bounded sets Sy, Sey - v v s Sm - - such
S hat 8, contains S.ya, that is, 8512 Se> 85> - - . There
exists a point P which belongs to every S,i=1,23 ...
The proof iz easy. Let Py be any point of Si, Pe any point of
8y, ete.  Now consider the sequence of points P, Poy « -+ - 5 P,
"Phis infinite sct belopgs to S1 and has a limit point P
which belongs to Sy since Si is closed. But P is also 3 limit of
P, Poy1, . . ., 80 that P belongs t0 S, Hence Pisin all Sx,
n=1 2, . ... .

Digmeter of g Set. 'The diameter of & set § is the suprerum of

all distances between points of the set. For example, if S 18 the
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get of numbers 2 which satisfy ¥ <z =<1, 3 =2 <7, the
diamcter of 8 is 7 — 3 = 64, There are pairs of poinis in §
whose distance apart can be made as cloge to 63 as we please.

Problems

1. If a set is closed and bounded, the diameter is actually
attainod by the set. Prove this.

2. Tf, in the theorem of nested sets, the diameters of the S,
approach zero, then P iz unique. Prove this.

The Hetne- BorP.‘,’ Theorem. Let S be any closed and \bbunded
set, and let I" be any collection of open 1nfbrvalsshawmg the
property that if z is any element of S, then th(,re exlsta an open
interval T, of the eollection T such that » isf contamed in T..
The theorem states that there exists a subc}cﬂectxon 7 of T
which is finite in number and such that ev ory element « of S is
contained in one of the finite colh,(,tmn Of open intervals that
comprise 17. m

Before proceeding to the proof; i\e’pomt out that (1) both the
set § and the collection 7 are. \given beforchand, since it is no
great feat to pick out a smgje open interval which ecompletely
covers a bounded set S; &2) S must be closed, for consider the set

S(l 1/2,1/3, Un . . . and let T consist of the follow-
ing sef of open 1ntu:\al.s

?\Tx such that [z — 1] <

,\'.f 1
:t\.“; T2|$ such that |z — 3 < 32
A&
\’§w’
S )
e/ 1 1
T |x such that |z — —
(n + 1)2

It is very easy to see that we cannot reduce the cov ering of 8
by eliminating any of the given Tn, for there is no averlapping

of these open intervals. Each 7, is required to cover the point
1/n of S contained in it.
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Proof of the theorem: Let S be eontained in the interval
_N £ z £ N. Thisis possible since § is bounded. Now divide
this closed interval into two equal intervals (1) —N <2 £ 0 and
(2)0'< 2 £ N. Any clement x of S will belong to either (1} or
(2). Now if the theorem is false, It will not be possible to cover
the points of S in both (1) and (2) by a finite number of the
given collection 7', so that the points of § in either (1) or (2)
require an infinite covering. Assume that the elements of § in,
(1) still require an infinite covering. We subdivide this interval
into two equal parts and repeat the above argument. In{this
way we construct a sequence of sets 51 D 8: > 85D - - (")sich
that each S; is closed and bounded and such that the Wiameters
of the & — 0. From the theorem of nested sets ghere exists a
unique point I* which is contained in each S ~Since P is in S,
one of the open intervals of T, say T', will\gover P. This T,
has u {inite nongero diameter so that eyedtdally one of the S;
will be contained in T, since the diameters of the 3i— 0. But
by assumption all the elements of‘thj‘s S; require an infinite
number of the { 7'} to cover them, ) Thisis a direct contradiction
to the fact that a single Ty ci;;)’fei's them. Henee our original
assumption is wrong, and th& theorem is proved.

49. Uniform Continuity. 'A real, gingle-valued function f(w)
is suid to be continuptie'at a point z = ¢ if, given any positive
number ¢ > 0, th BQ exists a positive number & > 0 such that
|fz) - f(e)] < éayhenever ]33 — c[ < 5. The 8 may well depend
on the ¢ and Qaﬁe point & = c. The function f(z) is said to ‘be
continuous gver a set of points 8 if it is continuous at every point
of 5§, 4

Wgtﬁo{v prove that if f(z) iz continuous on & closed a,u_d
bqui‘l,ded interval, it is uniformly continuous. We define uni-

.. form continuity as follows: If, for any ¢ > 0 there exists a 8 > 0
Usuch that [f(z) — f(as)| < ¢ whenever lzy — 2| < 8, then fgx)
is said to bo uniformly continuous. If is important to notice
that & is independent of any & on the interval. We make use

of the Heine-Borel theorem to prove uniform continuity. Choose

an ¢/2 > 0. Then ab every point ¢ of our closed and bounded

set there cxists a 3(c, ¢/2) such that |f@) — fle)| < ¢/2 for
e—8<gz<et 6 Hence every point of § is covered by a
2¢-neighborhood, and so also by a ﬁ—neighburhood. By the
Heine-Borel theorem we can pick out a finite number of these
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neighborhoods which will eover 8. Let 8; be the diameter of the
smallest of this finite colleetion of é-neighborhoods. Now con-
gider any two points x: and z» of 8 whose distance apart is less
than 6. Let g be the center of the s-neighborhood which covers
#1. From continuity Ef(a:l) — f(:t:o)| < ¢/2. But also x; differs
from =4 by less than 25, so that ]f(l'g) — f($0)| < ¢/2. Conse-
quently |f(zs) — flzs)] < e QE.D.

43. Some Properties of Continuous Functions Q

{(a) Assume f(z) continuous on the closed and bounded intervral
a =z =b As a conscquence of uniform continuity,S'8/can
prove that f(z) is bounded. Choose any € > 0 and aonsider the
corresponding & > 0 such that |f(z1) — f(z2)| & ¢S whenever
lz; — 2 < 5. Now subdivide the interyal (a4 ) into » finite
number of -intervalg, say » of them. It isQieasily seen that
max |f(z)| < |f(a)| + ne. O

(&) I fle) < Oandf(d) > 0, there exish®a ¢ such that f{c) = 0,
a <¢<b Let {z} be the set of a}l'\}]%int-s on (a, b) for which
f(xy < 0. The set ig bounded and Honvacuous since @ belongs
to {z},for fla) < 0. Theset {aRwill have a supremum; call it e,
Assume fie) > 0. Choosee = Fc)/2. From continuity, a s > 0
exists such that |f(z) — _f(c’}i- < fley/2 if | — c[ < 8. Hence
flx} 2 3f(c) for all x in{Bome neighborhood of z = ¢. Hence ¢
is not the supremumofNz}. Similarly f(c) < 0 is impossible, so
that fle) = 0. N\
- {¢) We prove\that f(z). attaing its maximum. In (a) we
showed that, ff) was bounded. Let s be the supremum of f(z),
a=zx= b\\AS a comsequence, f{z) < g for all z on (g, B).
Now condider the set s —e § — 2, . .., s —¢n ..
wherene> 0. Since sis a supremum, there exist @, 2z, . .
x.n,j.;; -« such that f(z1) > s — ¢, flay) > s — €2, . ..

Y

V R O

L §
-}

H

The set {x:} }?vill have a limit point ¢. Let {./} be a subsequence
of {z.] which converges toc. Then lm - flwn) = s, since

amf e

e/n—0 a8 n-> . But from continuity
im f(z.") = f(e).
Hence f(c) = s. QE.D.
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Problems

1. In the proof of (¢) we exclude flc) > s. Why?

9. If f(z) is continuous on (g, b), show that the set of values
[z} is closed.

3. I f(z) has a derivative at every point of (@, b}, show that
f(z) 1s continuous on (e, b).

4. If fiz) has a derivative at cvery point of (g, b}, show that@y
¢ exists surh that (¢} = 0; @ < ¢ < b, when fla) = fiby =0

5. Tf f() has a derivative ab every point of (g, b), showthat
a ¢ oxisis such that 7(b) — fla) = (6 — a)f (e £ ¢ <

6. Show that if two continuous functions flx}, g{:r?):'exist such
that f{z) = g(z) for the rationals on (a, b), thEI{I("SE) = g{z} on
(e, B).
7. Given the function f(z) = 0 when z i iwritional, f(z) = 1/¢
when 2 is rational and equal to p/¢ (2, idtegers and relatively
prime), prove that f(z) is continuodga The irrational points of
(0, 1) and that f(z) is discontinubus’ at the rational points of

thig interval. o0
44. Cauchy Criterion fof%Sequences. Let @1, %2 « + - 5
Zn, . . - De & scquence of $eal numbers. We say that L is the

Limit of {his scquence,Or that the sequence CONVErges to L, if,.
given any e > 0, théfetexists an integer N depending on e such
that |[I. — z.| < é4vhenever n 2 N(e). However, in mos} cases
we do not knéw L, so that we need the Cauchy convergenee
erilerion. & states that a mecessary and sufficient condition
that a sofjdence converge to a limib 1, is that given any ¢ > 0,
t-here\e;i;\lé{s an integer N such that |2, — 2o <efornz N,
m 2 N. That the condition is necessary is obvious, for
O L — 2] < ¢/2,
N\ L~ Za] < ¢/2form,n z N implies |%n — T < eform,n = N.
The proof of the converse is not a3 trivial. Choose any e/2 > 0.
Then we assume an N exists such that |z — Zn| < €/2 for
m, n= N. Hence lxn] < |:z:\r\ + (¢/2), nZ N, 80 that the
sequence js bounded. We ignore &1, 3, - - - » T2 gince a finite
number of elements cannot affect & limit point. From the
Weicrstrass-Bolzano theorem this infinite bounded set has at
least one limit point L. Hence, given an ¢/2, there exists all Tn,
with »n > N, such that [L — xﬂl < ¢/2. But we also have
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|2m — %a| < ¢/2 for all m, n = N. Hence |L — Tl < e for all
m = N. QE.D.

Problems

1. Bhow how the convergence of a seriez can be transformed
into a problem involving the convergence of a sequence.

2. Bhow that the Cauchy criterion implies that the nth term
of a convergent series must approach zero as n—s . ~

3. Show that the sequence 1,1/2,1/3, . .., 1/n, . .\ con-
verges by applying the Cauchy test. O\

45. Regular Arcs in the Plane. Consider the g% of points -
in the two-dimensional plane
such that the'jstct ¢an be repre-
sented _ip\\some coordinate
system MYz = f(1), ¥ = o{l),
o =4 <8, where f(t) and ¢()
arel¢ontinuous and have con-
stntious first derivatives. Such |
turves are called regular ares.
A regular curve is a set of
points consisting of a finite
number of regular arcs joined

RS one after the other (see Fig.
<O B a5,
FI‘(}% PoPl, P;LPz, PQP;;, P’y are

o\ the regular ares joined at P,
Py Pa. Neétice that there are at most a finite number of dis-
COH‘til}l\J?biéS of the first derivatives. In Fig. 45 the derivatives
ar%il,scontmuous at Py, Py, Py,

R }.:46. Jordan Curves. The locus ’; - f((% a 2i 26, will be

AN = ¢
~\~ealled a Jordan curve provided that e and’go(l) are gontinuous
and that two distinet points on the curve correspond to two
distinet values of the parameter ¢ (no multiple points).

A closed Jordan curve is 4 eontinuons curve having f{a) = (),
plo) = @{8) but otherwise no multiple points.

From this we sce that a Jordan curve ig always ‘‘oriented,”
that is, 1t is always elear which part of the curve lies between two
points on the are, and which points precede a given point, We
shall be interested in those curves which are rectifiable, or, In
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other words, we shall attempt to assign a definite length to a
given Jordan are or curve.

47. Functions of Bounded Variation. Let f(z) be defined on
the interval @ = # < b. Subdivide this interval into a finite
number of parts, say @ = Lo, Ty, - - - iy« o vy Tasly Tn T b.
Now consider the sum

@) = fa] + [ften) — el + -+ o+ ) — flen — 1)
= 3, @) — >

¢ \“\'
If the sums of thls type for all possible finite SubCthSlOl‘iS ire
bounded, that s, if ,u,‘
2 HENES fla) <4 < @ \\ (153)
i=l \

we say that f(x) is of bounded variation m&’a, b).
A finite, monotonic nondccreasmg metion is always of
bounded variation since D

.

2 lf(it:t) - f(:c,;*l)l = E U‘(Sﬁ:)' - f(xn—l) f(b) - f(a'} =

An example of a {onﬁﬁuous function that is not of bounded
varigtion is the fol@*mg

7 #0) = 0

f(x)=xsin§% 0<z=s1l

Let u@’f)dlwde 0 < r < 1 into the intervals

o 1 1
)t Sz
/ n+1) n
n=1,2 ..., N Nowjl/n = (/n)sin (xn/2) so that
N

1 1 9 2 2
il T — 242 . o =
f(n) f(n—l—l)’ L+gts ™t N

We cannot bound this sum for all finite N since the series diverges
as N—» w. N was chosen as an odd integer.

2

=1
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48, Arc Length. Consider the curve given by x = f(f),
¥ = o(f), and assume no multiple points. Divide the parameter
{in any manner into # parts, say

a=lh<h << " <l =§
and consider

Sa= X {la(t) — el + () — yn)P
o A
y This iz the length  oN“the
B straight-line segmeoe ni&“,]\}mmg
the points z(t), #&), ¢+ = 0,
1, 2,. .. ,ﬂ(‘(&ee Fig. 406).
If the sct of Al such lengths,
obtaincdN ’By\ all finite raeth-
ods of sitbdivision, is boundad,
we &i&’ that the curve is recti-
ﬁﬂN(‘ and define the length of
OMMHC curve as the supremiizm of
Y “these lengths,
N An important theorem Is
22> x the following: A necessary
Fre. 46. £C ) - and sufficient condition that
PN the curve desecribed by

7%

N =, = e
be rcctiﬁablt\“’is"that (&) and (i) be of bounded variation. Let

{Xi—lr yi..ﬂ

.\“ "
%4 = 2 6 — £l + o) — olanlT
O vt
.‘\f‘:.& B = g U(é;) — flt 1)! + l(p(t‘) — ‘P(tz—l)l
\\' so that

A<B=+24

Congequently if the curve iz rectifiable, f(f) and off) are of
bounded variation, and conversely, if f(f} and (1) are of bounded
varintion, A is bounded, and hence the curve is reetifiable.

If f(f) and &'(f) are continuous, then from the law of the mean,
lf@) — fen)] = |F @& — 6] < A]t‘ — ], whore A s the
supremum of If’(t)l e S lSfandti =L =1
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Z () = Jlt)| £ A 2,1 Wt~ tia| = A8 — @)

Similarky, (f) is of bounded variation, so that the curve is recti-
fiable. Under these conditions it can easily be shown that the
are lenyth is given by

df\®  {deN\ | O\
LI G T g

'\

49, The Riemann Integral. We now develop thﬁ.}éﬁébry of
the THomann inlegral in connection with line inberrals. We
need # curve over which an integration can be.péﬁérmed and &
function to be integrated over fhis CUERE) "Let T ;:EE:}

a £t £ 8, beurectifiable arc,  Let f(:z,’})\be a function continu-
ous at all points of the curve E. (8dbdivide the parameter {
intonparts, @ = g <t <le < i <=6 Let the coordi-
nates of 2; be [o(t), ¢(t)], andtet As; be the length of arc joining
Pi 1 to £, Binee fz, ¥) isfgf@ritinuous, it will take on both its
minimum and maximumdor each segment PP Multiply each
arc length by ihe m;alxiﬁmm value of f(z, y) on this arc, say fa,
and form the sum \\
2\~ = PERCEDE
N | _
Lot J hé the infemum of all such sums. Similarly, let K be the
supreinum of all sums when the minimum value of f(x, ¥), s8Y fu,
iﬁ@ﬁs’éd. Tf J = K, we say that flz, y) 15 Riemann-integrable
“over the enrve T, and write

T =R = [ g ds = [ Sle, 017+
whenever o and ¢ are continuous.

That J = K for & continuous function defined over a rectifiable
curve is not difficult to prove. Yor,

S K= (u—fn)bs
X i=1
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and from the uniform continuity of f(x, ¥) we can subdivide the
curve I' into ares such that the difference between the maximum
and minimum values of f(z, ) on any are is legs than any given
e > 0 so that :

|J — K] = e=[as] < oL (155)
Walcave it ag an exercise for the reader to prove that we can make
J ag cloge to J as we pleage and similarly that the difference

N

N
fi) N\

(i)

'”\.,;’3 Fia. 48.

\”\; “between K and K can be made arbitrarily small, for a sufficiently
large number of subdivisions. Since the e of (155) is arbitrary,
we can muke the difference between J and K as small as we
please so that / = K since they are fixed numbers.

50. Connected and Simply Connected Regions. A region A
is said to be connected if, given any two points of the region, we
can join them by an arc, every point of the arc belonging to the
region K, In Tig. 47, (i) is connceted; (ii) iz not connceted. In
(i}, B i3 the nonshaded region.
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If every closed curve of a connected region I can be eontinu-
ougly shrunk to a point of E, we say that the region is simply
connected. In Tig. 48, (i) is connecfed, but not simply con-
neeted; (i) is simply eonnected. In (i) the curve I' cannot be
continuously shrunk to a point. An analytic expression for
simple connectedness can be sct up, but we shall omit this.

51. The Line Integral. TLct

f = X(z,y, 20 + Y@, 19 + 4, v, 2K Q

N

' d AN
and consider the linc integral f (f . ;é) ds al‘o/ng a regtiﬁable

Ny

space curve T' given by 1 = I(s). Sinee A
| dr N
O g6 = dr = de i+ dyj + Gk
ds O
‘e hav A
we have A
dr )
- —_ = i £ 156
fr (f ds) ds ‘Lde—l— Ydy + Zde (156)

TN
»

We use (156) as a mea.né'of evaluating the line integral, If

the space curve is gis{{n by x = (t), ¥ = y(t), z = 2(f), then
= ] +< )

(156) reduces to \\

.': :.‘ t1 d-’:ﬁ d_)y. E’IE] Lrd
sz-‘@m /. [X(t)-oi-i“ Y 5 HEO 5 ¢ (157)
O

In nBTa.l, the line integral will depend on the path joining
the $wo end points of integration. If Jf-dr 'does not depend
ofvthe curve T joining the end points of integration, We gay that f

“\'a conservative vector fild. If f is a force field, we define
’ B . 3
f 4 T-dras the work done by f as the unib particle moves from

Ato B. We shall now work out a few examples for the reader.
Bzample 55. Let £ = &4 + y*, and let the path of integra-
tion be the parabola y = % the integration being pel’ffarmcd
from (0, 0) to (1, 1). We exhibit three methods of solution.
(a) Let & = ¢, so that y = ¢ Thus :

iy, = d=0T2E
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and
E=1 1, _
LG f-dr:fo (£ 4 20) di =

(b} Since y = 2 everywhere along T, f = 2% + 2% along T,
and dr = dxi -+ dyj = (i + 2zj) de, so that

Joear = E @+ 27 de = 5
(C) O\

. a1 Tt X
. = 2 3 = —! - — L v
[(00) f-dr .];0,0) 2 dx + y* dy | T =N .

{¢) shows that the integral from (0, 0) to (1, 1) 18 md( spendent
of the path sinee 2?dx + y® dy is a perfest ﬁ}ﬁvrt ntinl, that is,
2t de 4 yPdy = d[($3/3) + (/4]

Ezample 56. f = i — 2j, and let ghe/path of integrution be
y = z* from (0, 0) to (1, 1). Then..'\ v

“’

(1,1} 1 .
ﬁom £-dr f(no yde — xd@’"—f 22 de — 2(%x da} = —%

Next we compute the mtegral by moving along the @ axis from
z=0toz =1 and %hen along the line & = 1 from y = 0 to
y = 1. 'We have m\

(1\1) (4B )]

a, o .
(omf dr ﬁoo)f'dr+ ao f1dr
Along tke” ﬁrst part of the path, f = —=2j and dr = dx i, since
y = #= 0. Along the second part of the path, f = vi — J,
dr\%\ﬁfyj since z = 1 and dz = 0, Thus

3 {1, 1} z=1
"'\:..\v’ ];0,0) £ dr = fz=0 - d$l+f (yl_J) 1

\} fol—dy=—-1

The line integral does depend on the path for the vector field
f =yl — zj. Wesay that f is » nonconservative feld.

62. Line Integral (Continued). Let us assume that f can be
written as the gradient of a scalar ofz, v, z), that is, £ = Ve

Then the line integral f 4 f- dr is independent of the path of
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integration from A to B since
[Peoae= [7voar= [ do=o(B) ~ o4
ia = |, Ve-dt = | do=oB) ~eld) (158)

Our firal result in (158) depends only on the value of ¢(z, y, 2)
when evalnated at the points A{xy, ¥4, 20), Bl#y, ¥1, #1) and In no
way depends on the path of integration. If our path is closed,
then 4 = B and @(B) = »(4), so that the line integral around
any closed path vanishes if f = Ve, However, the region for

which f = V¢ must be simply connected. Let us consider tie,

following example. N
Ezamyple 57, Let A\
—yi zj O °

2+ gt + 2%+ 42 .m:\\’

7
<

f =

Then f = V¢ where ¢ = tan~! {y/z), and if wéintegrate f over
the unit circle with eenter at the origin, xf{have

$1odr = 95 d (ta.nﬂl %):ﬁf" a0 = 2

8o that our line integral does Jf}i)’ﬁ: vanish. The region for which
f = Vo is not simply connected since ¢ is not defined at the
origin, K

We now prove thatghJ1 « dr is independent of the path, then
fis the gradient ofya sealar ¢. Let

| s s d_l_') .
go(ﬁ;"g’“;%) - .L’nfxn, e, 20} £dr = «L’“ (f ds ds (169)
N \V :
OV \w:

O dr
elaF Az, v, 2) — olz, y,8) L j’@@“‘" ¢ ")( ._) ds

N Pl u, %) ds

A Ax A

. \%4
\lel since the line integral is independent of the path joining P
to @, we choose the straight line from P to @ as our path of
ntegration, that is, dr = dzi, Thus

h]Il (,D(x + A.’I:, Y, 2) - (P(:B, Y, z) — gf
Ar—s0 Ax or
[T Xy, 2) de

.= ]_im sz o —_— = X(:":) Y, Z)
Az—+0 A

N
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from the calculus. We have assumed that f is continuous. Now
similarly

d
'aip = Yz, y, 2), 2= Ziz, v, z)
ay . dz
so that
d d a
=—";i+—*-°j+fk=v¢ (160)

A
1f f has contipuous derivatives, we can easily conclude w hether
f is the gradient of a scalar or not. Assume f = Vg, or ¢ \ \

\\

afp de 6‘@9\”’
1y X = —- DY = 3 7 ==
(1) P (2) o (3) o

Differentiating (1} with respect to y and (2)\Qsjr\h respect to ,
we see that

ax. oY\ { N
OXo_ T Y L ¢
B'y a:I,‘.‘ w
Similarly o\ -1
Y\ ez (161)
—ANE —
e dy
N2z _ oX

/N

.\; de Oz

This is the conc}‘mon that v xf = 0. Conversely, assume
vxi=0 Leﬁ -

& N/

oz, y,\z)ié fm X(x, y, ) da + L ” Y (zo, 4, 2) dy
\ =3
S . + L'Z(ﬂ’m_ya, ?yds (162)

.‘\‘

I‘\~¢

\ ‘Now

de
— = X(,y,2}

ar
deg an
a_y = _/_;0 _'a_dx_i_ Y(xtl}y}z)

[ s+ Y (@3,9)

=Y, y,2) — Y(xo,y, 2 + Ve ¥ 2)
= Y(z, ¥, 2)
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d
Similarly £ = Z(x,y, 2). Consequently

de de e
f=—i+_—ji+ k=¥
dx T ayJ T oz ¢ .
We have proved that a necessary and sufficient eondition for £
to be the gradient of a sealar is that
— N\
vxi=0 (168)
- ¢ )
A\
Iff=VeoorV xf=0,fis said to be an irrotational\wector.
Ezample 58. Let f = 2eyed + 2% + s*yek. Then

4

i i k- ..mt\\’
a
v xf= % - 'E%\\ggo
2ayes ae Pye
and I
p = j‘;w 2xye® dx +{£§b’“’;3 dy + j;s 02-0-¢°ds
= :I:"!ye” ~ \::L

g0 that £ = V(z2ye* j*?s}nsta.nt).
X N Problems

1. Givenfr= ":L:yi — zj, evaluate ff . dr along the curve y = z*
from the gfign to the point P(1, 1)- _
2. Shew/that if the line integral around every closed path is
 zero,thit i, it £f - dr = O, then f = Ve.
3\ Bhow that #r-dr = 0. ‘
t“\:f‘i- Show that the inverse-square force field f = —r/r® is con-
\\ fervative. The origin is cxcepted. _
5. f = (y + sin 2)i + «j + = cos zk. Show that f is conserva-
tive and find ¢ so that £ = Ve. .
6. Evaluate [¢ dy — y de around the unit circle with center
at the origin.
7. If A is & constant vector, show that A - dr = 0,

FAxdr=20

- B3. Stokes’s Theorem. We begin by consideri_ng a surface
of the type eneountercd in Chap. 3. Now consider a closed
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rectifiable curve T that lies on the surface. As we move along
the curve T, keeping cur head in the same direction as the normal

ar - .
o X3 e keep track of the area to our left. It is thiz smiace
TN

that we shall keep in touch
with, and T will be the
boundary of this swface.
We neglect ithe rest oRthe
surface r{u, v). We pdwcon-
sider a mesh of 11@'1&2?01’1{5 on
the surface furxon,(;r‘;f?}}; a col-
lection of paraletlric curves.
Of coursephe boundury T
will nobN\jn gencral, consist
of ardsof these parametric
curvos (see Fig. 40, Con-
sider the mesh ABCL. Let
.\ the surface coordinates of A
be (u, v), so that A(u, v}, ButP du, v),

COnY du, v + dv)

Diu, v + dv) a_e‘ythej@ordinates of A, B, ¢, D. We also assume
that the paramettis curves are rectifiable. Now consider

L >

<"
:.\:“.’ 95ABC’Df »dr

O\
ThaQ:@:l‘nc of f at A is f(u, v}; at B it is f(u + du, v}; at D it 13
(o, + dv).

7\ “Now

f(u + du, v) = f{u, v) + df.
= f(u, v) + (dr, V)f

= f(u, v) + (;—;du-V)f

except for infinitesimals of higher order. Similarly

fla, v + dv) = £{u, v) + (gz du - V)f
v
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Hence, but for infinitesimals of higher order,

ar or ar ar
cdp = fo— f —du L N
gﬁmpf dr = fo - du+ [ + (audu V)f] S —f=

_ dr ar
— [f +(5 dy V) f] -a_du

U

NEEIER RN

du N

)
N&W _ _ N v

ar ar 3 } ar A7
Ll R ) x— N
¥ %8 (a xav) [(Vx %ol m Loy
(@G 5
dt ar N oy ou
Hence - & Lo
\or; or
e dr = C e 165) .
SﬁABCDf dr = (v Xf) T du dv (163)

. ar . R * . .
Now PRy dudy = area ofsector ABCD in magnitude, and
o Ny

/N

its direction is along t-heqéorr;lal. We define

\ = — X a du dv (166)
du  av
</
so that o \J
Qv . dr = » dé
.{§w L_Bcnf dr = (v x

.Q?Ez’ DOW sum oyep the entire network. Interior line integrals
<\S'i1‘l cancel out in pairs leaving only 951‘f «dr. Also
. v xf) - dé
S @ xd dd-—>fsf( )

over surface 8

r
as the arcas approach zero in size. We thus have Stokes’s
theorem ;

e ) (167)
95rf dr . fS[ (v x ) - dé
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Comments

1. The reader may well be aware that (165) does not hold for
a mesh that has T as part of its boundary. This is true, but
fortunately we need not worry about the inequality. Thy line
integrals cancel out no matter what subdivisigns we use, and for
a fine network the contributions of those afga&s next to 1I' con-
tribute little to {[(v x £) - d6. The limiting process takes care
of this apparent negligence. ¢\

2. We have proved Stokes’s theorem for a surface of the type
r(u, v) discussed in Chap. 3. The theorem is easily ﬂeén{}) be
true if we have a finite number of thesc surfaces connected con-
tinuously (edges). (’“«.

3. Stokes's theorem is also true for conical 'uinte, where no
dé can be defined.  We just neglect to integrate over a smell area
covering this point. Since the area GHJ{ De made arbitrarily
small, it cannot affect the integral. ’

4, Thc reader is referred to the text’ \f Kellogg, ¢ Foundations
of Potential Theory,” for a much mo;c rigorous proof of Stokes’s
theorem. Y

54. Examples of Stokes’s Iheorem

Example 59. Let I' be a c‘lm( :d Jordan eurve in the z-y plane.
Let £ = —4i -+ 25, Ap.plylng Stokes’s theorem, we have

N\
Pt = E)Sx\dg ydx—ff(fo) . do

,\.f o ]

k
W 4 @
2, —|-kdydx
N> ff dx 6_1 az v
s

=

=2ffdyd;c=2f1
3

Area A =} 96 zdy — ydz (168)

Tor the ellipse ¢ = a cos ¢, y = bsin f, do = —a sin {1 di,

dy = b eos tdt
and

A=3 fozw abl{eos? ¢t + sin? {) di = wad

A
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Ezample 60. If f has continuous derivatives, then a necessary
and suflicient condition that $f- dr = 0 around every closed
path is that ¥V xf = 0.

¥ v xf=0, then 95f-dr=[f(fo)-ds=0. Con-
g

versely, assume ¢f - dr =0 for every closed path. IfV xf # 0,
then ¥ s f = 0 at some point P. From continuity, ¥ xf# O
in some region about P. Choose a small plane surface S in this

region, the normal to the plane being parallel to V x f. Thény
\

9Sf-dr = ffV xf-ds >0 acongra}j'i&&.ion
8 ON °

. s
Ezample 61. We sec that an irrotational ﬁcld'}; characterized

by any one of the thrce conditions: O
, x:\ o/
{i) = Ve N\
(i) v xf =0V (169)
(iii) 55 f- dr’r-w 0 for every closed path

Any of these conditions impli’es’the other two.

. Example 62. Assumg(f not irrotational. Perhaps a sealar
p{z, 3, #) cxists such ’tiha}a uf is irrotational, that is, Vv x (uf) = 0.
If this is so, LA\

S I xf+Vpxf=0 (1707

and dottin ::ﬁlfO) with f, we have, simee f-Vu xf= 0, the
equation. {

N\ St @ xfH =0 (171)
It\fz‘ Xi+ Yj + Zk, (171) may be written
V X ¥ Z |
8 8 9i_9 a2 -
gr dy o2
X Y Z

shown that (17 2} is also

In texts on differential equations it is : .
z} an integrating

sufficient for p(z, ¥, 7) to exist. We call ulz, ¥,
factor,

Ezample 63. Let f = flz, y, )& where a js any constant vec-
tor. Applying Stokes's theorem, we have
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9‘5f-dr= foVx(fa)-ds

=fo (Vf x a) - dé

or
a-sﬁfdr;- a- ffdd x Vf
8 N\
or A
28N
a-(gﬁfdr-—ffdaxvf)=o N
3 D
.y N
Bince a hag arbitrary dircction, we have \
56fdr~f[daxvf\ (173)
'\ '
Eromple 64, letf =a xg, x»hte‘} a is any constantvector.
Applying (167), we have . O

Sﬁgxdr—ffﬂg‘(axg) dé |
—J Tlaw 9 — @-vgl - d
. \\za-ff (V-g)dd—a-ffv{g-dd)
O 3 : g

remembefltiiag that ¥ does not operate on dé (summed). Therc-

fore :\“'
\i\ —a-fgxar=a-[[ (@ xv)xe
8
”\and
\>” ggdr xg = ff (dé xV) x g (174)
8

We notice that in all cases

gﬁdr*f=f'f (d6 x V) (175)

The star (*) can denote dot or cross or ordinary multiplication.
In the latter case, f becomes a scalar f.
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Problems

1. Prove that #dr = 0 from (175).
2. Show that | £dr x rl taken around & curve in thex-y plane
is twice the arca enclosed by the curve.
3.1 §=—cosyi+ z(1 + siny)j, ind the value of #f-dr
_around a circle of radius r in the z-y plane.
4, Prove that #r-dr = 0,

5. Prove that Lf dé xr =% §6r2 dar. O\
- { ‘\

6. Prove that FuVy.dr = — FvVu-dr A

7. Prove that 95 w VY dr = ff Vi x Ve« dé. ‘ ’
8 w7

8, If a vector is normal to a surface af each Peint, show that
its curl either is zero or is tangent to the surifed at each point. -

9. 1 a veetor is zero at each point of\a~surface, show that
its curl either is zero or is tangent to thesurface.

10. Show that 56 axr-dr= 2@.g’~ffdd, if a is constant.
N F

il. If 95 E+dr = — liuffB . dé for all claged curves, show
a6y
. ’i“’}
that v <« E = — 1 BB\“'
ot

12. By Stokqs@}tﬁeorem prove that V x (Vo) = 0.
13. Show that Sﬁ dr/r = ff (/%) x dé where r = lt],
O\ 8

{=, # 2

3°
14. Find the vector f such that 2y = f, o 5 £

\13 Tt £ = /7%, show that V xf = 0 and find the potential ¢
‘sush that f = V. ..
16. Show that the veetor £ = (—ui + 2i)/(* + y%) 18 irrota-

tional and that ,(761‘ f.dr = 2r, where T is & circle containing the
origin. Does this contradict, Stokes’s theorem? Explain.
17. Show that f f v xf-dé =0, where Sisa closed surface.
g

18, Let € and ', be two closed curves bounding the surfaces
81 and 8;. Show that
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fc*fcu rio2 diy - dra = _4[]' 16, - ff dn
ng fcl r12® dry % dfy =

where ry, is the distance between points on the two curves.

55. The Divergence Theorem (Gauss). Let us consider a
region V over which f and V « f are continuous. We shall asgame
that V is bounded by a finitec number of surfaces such that at
each surface there is a well-defined continuous normal. ¢ W4 shall
alsgo assume that f can be integrated over the total sqrfé?ce hound-
ing V. Now, no matter what physical significanges has, if any,
we can always imagine f to be the product of :the depsity and
velocity of some fluid. We have seen previ(’j\;\:ﬂy (Sec. 20} that
the net loss of fluid per unit volume peruhit time is given by
v . f. Consequently, the total loss pep j&lit time is given hy

- [ff’ﬁtf;tszdr (176)
T aQ®

|

|

[ V)

- .

—

2

o

X
b—

=y

&

—————

Now since f and ¥ -  argeontinuous, there cannot be any point
in the region V at which\luid is being manufactured or destroyed;
that is, no sourcggbr sinks appear. Conscquently, the total
loss of fluid muskbe due to the flow of fluid through the boundary
S of the regiom\V. We might station a great many ohgervers on
the boundgmjr 8, let each observer measure the outward flow, and
then sum\dp cach observer's recorded data. At a point on the
surfagéwith normal vector area dé, the component of the velocity
perpéndicular to the surface is V » N, where N is the unit outward

‘\.'n’é)rmal vector. It is at once apparent that pV -dé =1f- dd
~\Jrepresents the outward flow of mass per unit time. Hence the
N/ total loss of mass per unit time is given by

[ [t arn

s

Equating (176) and (177), we have the divergence theorem:

[Jf-dd:fiff(v.f)df (178}
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Tor o more detailed and rigorous proof, see Kellogg, ** Founda-
tions of Potential Theory.” We now derive Gauss’s theoremby a
different method. Let f be a differentiable vector inside a con-
nected region I with rectifiable surface S. Swrround any point
P of R by a small clement of volume dr having a surface area AS.

Form the surface integral [ f f - d¢ and consider the limit,
a8

[[1as ‘ ""\

2N
Ar—D Ar ;\'\. *

If this limit exists independent of the approach of gﬁ-‘t’o zero, we

define ~\\
[[t-as |
- T AS £ A\, v
divf = Ali?»lo S (179)
We can write o\ D
prdive = f\fi-dot+ens (180)
.5

any
¢

where ¢ — 0 as Ar — BCNIf we now subdivide our region into
many elementary val:ﬁﬁ\es, we obtain formulas of the type (180)
for all of these re@ibné. Summing up (180) for all volumes and
then passing to(the limit, we have

\\\ f}!f div f dr = fsff-da (181)

In t,h'&lerivation of (181) use has been made of the fact that for
eall internal dd¢ there is a —dé, so that all interior surface
~ntegrals cancel in pairs, leaving only the boundary surface §
“as a contributing factor. The sum of the & Ar; vanishes in the
limit, for |Se Ar| € |efuu A7 < |dmac?; and if div £is continu-
OUS, [€|nae— 0 as Ar — 0.

By choosing rectangular parallelepipe
of Bee. 20, we can show that

[[-a gu | 9w

. R
— a8 4=+ (182)
div f jm::]_ . = oy Py

ds and using the method
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for f = i + »j 4 wk, which corresponds to our original defini-
tion of the divergence.

Ezample 65. Consider a sphere with center at & and radius a.
Takef =1 = 2i + 3j 4+ 2k,

dé = (5) s = (1) (2i + yj + 2k) d8

Now V. f =3, f-dé = (1/a)(x® + y* + 22 dS = a &5 00 the
sphere. Applying (178), f“?u dr = _”a ds, or 3V = &9 where
S is the surfeuc mx:,a, of the
sphere. If V i¥ lﬁgom to be
47a%, then § & @ra’.

Ezample 6. Tet f= g/
and let JA\be a region suyround-
ing the\onrrm and let S boe its
surfage. We caunot apply the
’dnyergonoe theorem to this re-
Ngion since f is discontinuous at
3% r=0. We overcome fhis diffi-

F1a. 50. N\ culty by surrounding the origin

N by a small sphere 2 of radius e

(see Fig. 50).. Th{é‘}inergence theorem can be applied to the

connected regloi\V’ The region V' has iwo boundaries, S and
Z. Applying (178),

AN/ -
AP o (FY [ Eds
:t>l.f£'f v (?_3> dT = .l‘;f ;r3 -
In Example 25 we saw that V- (r/r*) = 0. This implies that

_)(183) reduces to
[Joa--ffee o

Now for the sphere 2, dé = —r dS/e, since the outward normal

to the region V' is divected toward the origin and is parallel to
the radius vector. Hence

fsf%-dazﬂff-da;ff%d8=4wg

(183)
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since f {d8 = 4ret. The integral _fff - d¢ is called the fluz of
§

the vector field £ over the surface S.  We have, for an inverse-
square foree f = qr/ré,

fff-da:m (185)
5

Ezample 67. A vector ficld f whose flux over every closed
surface vanishes is called a solenoidal vector field. From (178N
it is casy to verify that V-f =0 for such fields. Hencé &’
colenoidal vector is characterized by either £f-dd 0 0T
v-f =0

Now assume f = V x g which implies V +f = ¥V x g) = 0.
1s the converse true? If V- f = 0, can we wiite'f as the curl of
some vector g2 The answer is ‘“Yes”! AVelcall g the vector
potential of f. This theorem is of imfportance in electricity
theory, as we shall sce later. Notioevthat g is not uniquely
determined since V x (g + Vo) -,—-,‘LV”:}( g. We now show the
existenice of g. Letf = Xi + ¥i% Zk and assume

. g ="ai - Bj + 7k
We wish to find a, 8, y-Suich that f = V x g and hence

K . o

., "oy 02

AN/

PO yole & (186)

N\ : dz ox

A o8 da

3 =%
~O° v "
3 oy 98 o _ 9 o, _ %,
\Now assume o = 0. Then X = :3;; - ‘5; Y=~ Py ax

Consequently if there is a solution with @ = 0, of necesaity

B = L:Zd:c+0(y,2)
v o= -—-j:Ydﬁ“"T(y!z)

Now v.f =0 or 0X = — (?_}: + 9.2_’7-) by assumption.
Fil ay o2
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dy ay ) gr  ag
e ST AU AN dr 4+ —- — ==
Hence P f ( + o o
TS G
= dx oy 9z
X X )+ o 9o
= (.TC, ¥, 2) - -(wﬁr = ay oz

80 that (186) is satisfied by =10, 8 = f: % de + afy, 2),
y = — f Y dx by choosingr = 0, e(y, 2} = — fz X('E-Q;g(;z) dz.

Hence f = V xg where g = [f Z dx 4 oy, 2)1] \—;/[ Yz k.
In general

g _U de+a(y,z)]1 _ f mxk+w (187)
For example, if f = V{1/7), then ¥V - fxiﬂ Now

&
: x z
X=——- =.‘—‘)—\i; 7= — =

3 O r3

where r? = z? + y® - z2 ﬁﬁﬁlying (187)

f —zdr N f  yde Kty
@+ v +«s\)* @t
¢ arbitrary

and \\‘ ¢

:;t: * 3 - ]
:g'>7 (x? + 4 + zQ)%(yg PN (—2 + yk) + Ve

A\

meple 68. Green’s theorem. We apply (178) to f1 = V¥
T, = v Vu and obtain

. fffv (u V) dr = fff(TﬁVzv—[—Vu Vv)d——ffu?’b » do

(188)

fifv.(wu)dr= [£f (UV"’%—I—V'VVu)dT:LvaH'dd

Subtracting, we obtain

ffRf(ng—vV*u)dr= fsf (wVy — v Vu)-d6  (189)
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Ezample 69. Uniqueness theorem. Assume two functions
which satisfy Laplace’s equation everywhere inside a region and
which take on the samec values over the boundary surface S.
The functions are identical. Let V2o = V% = 0 inside R and
¢ =y on 8. Now from (188) we have

jfﬁl;fevzed:r—k f!;fve.vgdf= fsfawodd
N\

Define # = ¢ — ¢ g0 that V28 =0 over B and § =0 on 3.
Hence J{ f [ ®0)2dr = 0, which implies V6 =0 inside “R.
o) Wy

Hence 8 = constant = ¢ — ¢, and since ¢ = ¢ on{S)ywe must
have ¢ = ¢. We have assumed the existence o Wp, vy on S.

Ezample 70.  Anolher uniqueness theorent, Lt f be a vector
whose curl and divergence arc known in ‘adsimply connected
region £, and whose normal components fte given on the surface
S which bounds B. We now provthth f is unique. Let f1 be
another vector such that V-f =2V +f, Vxi=V xf;, and
£.d6 = f1+ds on S. We now.donstruct the vector g = f — fi.
We immodistely have thafi®V-g=Vxg=g-dé=10. In
Sec. 52 we saw that if V x 2= 0, then g is the gradient of a scalar
P, g = Ve. Consequedtly, V-g = V¢ = 0. Applying (188)
with u = v = ¢, we litve

\\
fff[@V?aa}(Vga)?]dT: ffspVga-dd= f¢g-dd=0
2 N\NO

8
and heneg (Vo)2dr = 0 so that Vo = ¢ inside R, and
o] (]

\ .
g =\pr = 0, g0 that f = f, inside F. o
M: “We can also prove that f is uniquely determined if its diver-
\génce and curl are known throughout all of space, provided that f
tends to zero like 1/r2 as r— . We duplicate the above
proof and need lim f f eVo-di=0 TIie tends to zero like

S w

1/r, then Ve tends to zero like 1/r% and f f ¢ Ve + dé tends to
8

zero like 1 /7 ag r — o0,
Example T\, Letf = f(x, y, 2)a, where 8 is constant. Apply-

ing (178), we obtain
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a.fgffdd=fifV«(fa)dr=a-f£fvfd.»
Lffdd= fifwdf (190).

We leave it to the reader to prove that

| N
U da+f = flf (V * £) dr 09

£
« \/
\

Hence

Problems

1. me,thatffda xf = [[f(v x\f)}lf

2. Prove that f f dé = ¢ over a plt)ﬁ%ﬂ surface 5.
s \ N

*/;.
W

3. If f=axi+ byj -+ czk, @\¥, ¢ constants, show that
fff-dd =4rla + b+ ¢), )yhgrg 8 is the surface of a unit
S \

&3
sphere. N\

- [ [ 1as
4, By deﬁmngggﬁd F= lm 2% s show that
b\

Ar—{} Ar

'..fh,, af . af . af
"/ df=-—"34%-— —k

> grad / 6x1+ayj+6z
RN [[ 8
RO 5. By defining div £ = lim 8, show that
~ ) Ar— Ar
7 \ Ne”
1

rgin ¢

divf =

I:-— (r*sin 8 f) —I- (?‘ sin. 8 f) + = (?”fso)]

for spherical coordinates,
6. Show that

fJff-V(pch-: ];f ot - do — f?[fw,fdf‘
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7 Hw =4V xV, v =V x 1, show that

,%J{EHM:%js‘fuxv.mUfu.wdf.

8. fhow that

f_!f{ w Ty« Vodr = fsf ww Vo » dé — flf“w(w.w) df."\

0, Tf v = V¢ and V- v = 0, show that for a closed\'sﬁr?éce

¢ W

fﬂ[.]-’wdré [gf rpv-dd.m’.?f ™~

\Ny
10. Show that r|2r «déd =5 i, .
fsf l f}zf fi\“
1. 0 £ = ai — yj + (2* — 1k, 583 "the value of [ [ f-ds
S :

over tha closed surface bounded’:fyy the plancs 2 = 0,z = 1 and
the ovlinder 22 + y? = 1. 8%
12. If £ is directed alod®* the normal at each point of the

boundary of a regionﬁ}(’: show that f f f (Vxf)dr=0.
s J 14

13. Bhow that TT r x dé = 0 over a closed surface.
., 8

14, Gix»:e\zg \ f = (xye® + log z — sin )k, find the value of
f f ‘Qx"‘ff dé over the part of the sphere 2? + y* + zt = labove
L\

t-}}€f€c-y plane.
(15, Show that (a1 + yj)/(s* + 37 is solencidal. _
\ Y716, If £, and £, are irrotational, show that f1 x f, is solenoidal.
17. Find a vector A such that

f=yd — zzj + (2 + Pk = V x A

18. If », 8, » are eylindrical coordinates, show that V6 and
V log r are solenoidal vectors. Find the vector potentials. .

19. Let 8, and S; be the surface boundaries of two regions
Vi and V, Let r be the distance between two elementary
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volumes dry and dr; of ¥V and V.. Show that

Jodone [ rmdon = —mim + 1) [ ar, [ 2,

and that

Jo doer [ log rde = — [, dn fv;%

20, TV -f= o,V xf = i + ¢uf + ¢k, f = Xi + ¥j 42Kk,
s O
show that V2X = O _ s _ _}P__} and find similar expessions
dr oy dz o\

'\
for v¥¥, v®Z. Find s vector f such that v -f = 2% + ¢ — 1,
V xf=z A0

56. Conjugate Functions. Let us congidér“the two-dimen-
sional vector field w = u(x, )i + v(z, yiisand an orthogonal
vector field wy = v(z, )i — u(z, y}i. s Obviously w-w, = 0.
What are the conditions on u(z, y), v(g,4/) which will make w and
w1 irrotational?  From Stokes’s shédrem

Séw-dr = L/V xwdg;“f“/ (gi — %)dydx
&Y g

3y
3 o a1t (192)
. g o
95W1-d1‘ = ffv XYW+ dd = ff (—~ — ——) dy dz
8 {M\\ 8 dx ay
A necessary g,r}&\sﬁfﬁcicnt condition that both w and w, be
. . _Z' 3 6 6 }
1rrotat10na.l\”13"’ohat oo =0 and — ?-1—"' —_ 9z = {} (zee Sce.
A dx  dy dx o
52), ‘g?}ié'yields
m."{\\ 92 =] a—u
w\::\;‘; ax ay (193)
Y 2o
oy oz
R —

The reader who is familiar with complex-variable theory will

imr_nediat{:ly recognize (193) as the Cauchy-Riemann equations,
which must be satisfied for the analyticity of the complex func-

tion w = w(z, y) (), i = vV -1,
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On differentiating (193), we obtain

ou oty

Vig = — =
¥ dz® + dy? 0
a% %
Ve =— 4+ — =9
8z = gy? (194)
and
du dv  Ju dv
—_— _— = 0 ‘..\
dx dx Ay oy

If functions u(z, y), v(z, y) satisfy Fqs. (193) we say rfﬁ@?t.
they are harmonic conjugates. The importance of sup}i,}unc-

y v N
A 4 J—".\\
C : N A\ N
A\ Q {u, v)
P {x) .Y} “j\.’:.\
¥ WY ow
- ‘.:«’t} _ — U
0 w0

AFre. 51.
Q

tions is due to the fae‘s:}}lat they satisfy the two-dimensional
Laplace's equation gl\{}n by (194). If u satisfies V2 = 0, we
say that w(z, y) iz hdrmonie,

Let us now éngider two rectangular cartesian coordinate
systems, the £ plane and the u-v plane (Fig, 51). Let

E”\.Q.
\\“ r = ai+ yj.

Now_ ﬁiﬁ‘nvmy point P(z, ) therc ecorresponds & point Qu, v)
givetby the transformation u = u(@, y),v = v{z,y). Ience the
_\Snc-ﬁor W o= ulr, yd 4+ v(z, ¥)j corresponds to the vector

r=zi-+ yj.

If now p (z, y) traverses a curve ¢ in the a-y plane, Qw, ») will
trace out g corresponding curve ' in the w-v plane.

The curve u(z, ¥) = constant in the z-y plane transforms into
the straight line u = constant in the ¥ plane. Similarly,
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v(z, ¥) = constant transforms inte the straight line » = constant.
The two straight lines are orthogonal. De the curves

u{x, ¥) = constant

v(z,y) = constant intersect orthogonally? The answer is *“ Yog '
The normal to the curve «(z, ¥} = constant is the vecter

du .,  du,
Vu =—i+4+—j

dr = dy O
. am e ar
and the normal to the curve v(z, ¥) = constant is Vv = \g\;: -+ Y j
Ou dy | dudv A
Ve = — — + — — =0 from (1945
so that vu « ¥y . ax+6y Py (,")

>
Example 72, Consider the vector field W=\2a:y1 + (&2 — 9.
Here w = 2zy, v = 22 — ¢, and

» @ il
% ¢

9z Gy ANV

av ’:.a o/

— === = -2y

63;‘,:.’; o8

so that u and » are conjugate harmonics. The curves
K

x"‘,\ % = 2zy = constant

\ .

“and o(z, ) ,:}‘ — % = constant are orthogonal hyperbolas
which trangform into the straight lines u = constant, » = con-
stant, i i;,ﬁé u-v plane (Fig. 52).

Egapople 73.  Consider

w4

\ W= (tan_l 2) i+ §log (22 4 ydj
o N & ]
ov\ "7 . .
N/ Here u(z, y) = tan /), v = § log (2* + y?), and
o _ y '
A A + 32
du _ av x

55_5;? x4y

80 that % and » are conjugate harmonijes,
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]
v
1
(3} {4}
_ (2)
W,
(O
- —S—>u
O % :\..I/
Oy
{1) 2 )
2 oV
F1a. 52, NN
¥ R
A v::‘"z’ k
N 2)
0 & B) )
2! /f.__ ':\s.} [1}
‘ i\ 3)

»U

o
XA~
N

e
WL
N

|
e
Ned

"
4
/

&

Fia. 53.

. The cireles 22 I 3% = constant transform into the straight
lines v = { log ¢, while the straight lines ¥ = ma transform into
the straight lines 4 — tan—! m (Fig. 53).

Exampife 74, If ufx, y) is given as harmonic, we can find its
tonjugate o(z, y). If v(z, y) does exist satisfying (193), then
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dv dv diu au
=—d —dy = —dr — — d
d dx -+ ay 4 ay ax Y
ou, - du., .
Now consider the vector field f = Eyl ~a .+ We have that

Fu 92 )
Vxf=— (~— + _u) k = 0 by our assumption about iz, ¥).
Azt 1 gy?

Hence f is irrotational and so is the gradient of the scalar 4,
f= vy and

O
z O v Au 2\ e
b= —dx—f ~ - ¢ \J (195
¢ oy RPL ¥ \ 7 (195)
- O
As an example, consider # — z? ~ ¥, \v-hic]{:&'i%fsiﬁes Viy = (,
Hence \4

: N
o= —Zydx——ﬁ]y2-0dy“-<§\= — %y ¢

Problgzjn:sr’

"‘

1. Find the harmonie conj\ugi’dﬁb of &% — 32y of e cosy, of
7/ (@ + 7). N

2. Show that u(z, ) =in @ cosh y and #(2, ¥) = eos x sinh y
are conjugate harmonicxﬁnd that the curves u(z, y) = constanl,
o(z, ¥) = constante a‘@vﬁr’uhogonzd. What do the straight lines
¥ = eonstant tra.ns}brm into?

3. IT u(z, y)obix, y) are conjugate harmonics, show that the
angle betweeﬁ@iﬁy two curves in the a-y plane remains invariant
under t-!lq;f‘ransformation W= ulx,y), v = v(x, y), that ig, the
transif{rlnéd curves have the same angle of intersection.



CHAPTER 5
STATIC AND DYNAMIC ELECTRICITY

b7. Electrostatic Forces. We assumo that the reader i
familiar with the methods of generating electrostatic charges.

It is found by experiment that the repulsion of two like point,

charges i inversely proportional to the square of the distanec
between the charges and directly preportional to the product
of their chargez. The forces act along the line joining the t#o
charges. We define the clectrostatic unit of charge ‘(”e‘.;{u.) as
that charge which produces a force of one dyne onalike charge
situated onc centimeter from it when both artj:\‘placed n a
vacuum. ‘the electrostatic intensity at & peintP is the force
that would act on a unit charge placed at P, & result of the rest
of the charges, provided that the unit tg@(@harge does not affect
the original digtribution of charges. Kot a single charge g placed
at the origin of our eoordinate systemy the electric intensity, or
field, is given by E = (¢/r*)r. Tek any charges the field at P
is given by R\

N

D (196)

1 €&

-]
[
-

EO. —
RN
:J
where r, representg ﬂ}é vector from P to the charge ¢,

We have seen(n Example 25 that v« /) = 0. Conge-
quently, P\%

0 VeE =0 (197)
N
5o thﬁ-ﬁtthe divergence of the electrostatic-field vector is zero at
any :fliﬁnt in space where no charge exists. Ience E is solenoidal
‘except where charges exist, for there E is discontinuous. If the
coordinates of ° aro £ u, { and the coordinates of g; are @, ¥;, #;,
then 7 = [(f = 2)2 + (5 — 3)* + ¢ — 2)F, and

1 a1\, @ g_)_ f.(l)k=ﬁ
V;“‘a—g(a)%n(n UETATY A

L=(o— it (m—mji+ -k
“127

N\
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so that (196) reduces to
E= —V¢ {198)

ki

where ¢ = E @/Te.  We call ¢ the electrostatic potential.

=1
For any closed path which does not pass through a point, charge,
we have FE-dr = — #Vp-dr = — Fdp = 0. Thus E is also
irrotational, and . ~
VxE=20 (199)
° A\

We also note that j; E.dr = o(P) — (o) = (,a({)}, sinee
#{=) = 0. Henece the work done by the field in tg,king 4 unit
charge from P to « is equal to the potential at O

58. Gauss’s Law. Let S be an imaginary closed surface that
does not intersect any charges, In Exampld\66 we saw thab

ff {(gt/r%) + d38 = 4xq. This is true for ,esﬁh: charge ¢; mside 8.
8 . N

S 3}

Hence S

n aa'tg:’”:"'~ n
-L[Z%g’:%a;qa N (200)

a=1

~

For a charge outside S, ..
T\
g N ar
f‘;, ‘,\\ f Vf f 8 T 0 (201)
since there js mo-discontinuity in gr/r?, r > 0. Adding (200)
and (201), }33 obtain Gauss’s law,

g, £/

% [/ E-do 4rQ (202)

I

AN

\f}f}iere Qs the total charge inside g, The theorem in words
18 that the total electric flux over any closed surface equals 4
times the total charge inside the surface,

E'a:‘ampie 75. We define g conductor as a body with no electrie
field in its interior, for otherwise the “free” electrons would move
and the ﬁeld would not be statie. The charge on a conductor
must reside on the surface, for consider any small volume con-
tained in the conductor and apply Gauss’s theorem.
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JJE - daé = 4zq

and since B = 0, we must have g =0. This is true for arbi-
trarily small volumes, so that no excess of positive charges over
negative charges exists. Hence the total charge must exist on
the surface of the conductor. o '

If a body has the property that s charge placed on it continues
to reside where placed in the absence of an external electric field,

E O

Pre. 54, .

N\ ¥
we call t-he\:bédy an ¢nsulafor, Actually there is no sharp line
of demagation between conductors and insulutors. Every body
Posseies some ability in conducting clectrons.

ﬁi‘;’othe surface of a ¢onductor the field is normal to the surface,
'“\0:.1'\’ any compenent of the field tangent to the surface would cause
A flow of current in the conductor, this again being contri—?ry to
the assumption that the field is static {no large-scale 1:1’1013101’1 ’of
electrons oceurring). Such a surface is called an eqmpotcnt%al
surface. The ficld is everywhere normal {o an equipotential
surface, for the vector E = — Vi is normal everywhere to the
Surface ¢lx, ¥, 2) = constant.
Lzample 76, Consider & uniformly charged hollow sphere Z.
We shall show that the field outside the sphere is the same as if
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the total charge were concentrated at the conter of the sphere
and that in the interior of the
sg sphere therc is no ficld,

A T Let P be any point outside

Lr\ the sphere with spherical coordi-

nates ¥, 8, ¢ Conzsliuyct an
imaginary sphere through P con-

E
centric \with the sphere > (see
Fig. 54). From symmetry {Ns
obvious'that the intensity@hiny

—_ point of the spherc is (the Sume
e v ag that at P. Magover, the
field ig radial. Applying Gauss’s law, we have JfE st = A,

or A\ N
JIEdS = E[[d8 = 4rreE S350
50 that N
F = % and \= %r (203)
I { 7

\y¢

We leave it to the reader to shajﬁt:i’:h- t E = 0inside 2.

Ezample 77.  Field within @pdrallel-plate condenser. Consider
two infinite parallel plates\Wwith surface densities ¢ and —o.
'“@

¢t \,/

- \<
y :\ N/
“\‘.
£ 3
N\
R\
RS N Fie, 56,

\'"\,F'l‘om symmetry the field is normal to the plates. We apply

Gauss's law to the surface in Fig. 55 with unit eross-sectionsl
area,

[IB-ds = B = 4y (204)
80 that the field ig uniform,

Example 78. We now determine the field in the neighborhood
of a eonductor. We considor the e¢ylindrical pillbox of Fig. 56
and apply Gauss's law 10 obtain
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Ed = dzgsd
or
E = 4mN (205)

where ¢ 13 the charge per unit arca and ¥ is the unit normal vector
to the surface of the conductor.

Brample 79.  Force on the surface of o conductor. We consider
a small avea on the surface of the conductor. The field af a
point outside this arca is due to (1) charges distributed on the
rest of the conduetor (eall this field Ey), and (2) the field 348 to
the charge resting on the ares in question, say E, (s:gei ig. 57).
From Yxample 78, Ei + B = 4ws. Now the field“inside the

E,+E, A\

\
¢ \J Fra 57,
\ . - 3 -
conductor af thezpoint 7 situated symmetrically opposite P is
zero from Exa@p’Ie 75. The field at P’ is £; — E; = 0. Thus

N

By = 2o p{’r",tmit- charge. Tor an area 48 the force is

$)
N dE = (270)(r dS) = 2ne* dS (206)

2 8

MTﬁ%’s‘ force is normal to the surface, A charged soap film thus
\\Qends to expand.
Problems
1. Two hollow concentric spheres have oqual and opposite
charges § and —&. Tind the work done in taking a unit test
charge from the sphere of radius @ to the sphere of radius b, b > .
The outer sphere is negatively charged. )
2. Find the field due to any infinite uniformly charged eylinder.
3. Solve Prob. 1 for two infinite concentrie eylinders.
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4. Let q1, gz, . . . , ¢» be a set of collinear electric charges
residing on the line L. Let (' be 1 cirele whose plane is normal
to L and whose center lies on L. Show that the electric flux

through this circle is & = E 2r¢.(1 — ©0s B.), where 8. is the
a=l

angle between L and ary line from ¢, to the circumfercnes of C,
5. Let the line L of Prob. 4 be the » axis, and rotate s line of
force I' in the z-y plane about the z axis (see Fig. 58). If no
~

y ¢

4 A

X3
q9; O

T\
¢ 2\J Fia. 58.
charges exist betweeh the planes ¢ — A, ¥ = B, show that the

equation of a linodvef foree is

¢/

:‘.\X:;_;ra(x — Za)[(r — 202 + ¥t = constant

\=
5. fon

_Oygomnt charges +¢, —g are placed at the points A, . The
) h;}e}‘@f force Phat leaves A making an angle « with 4B meets the

\}}jz‘me that bisects AB at right angles in P, Show that

. B
$in 5 = V2sin 3 X PAR)

59. Poisson’s Formula, n Sec. 57, we saw that
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For a continuous distribution of charge density £, Wwe postulate

that the potential is
pdr
e=[[[*Z (207)

where the integration exists over all of space. At any point P
where ne charges cxist, » > 0, and we need not worry about..t\he
convergence of the integral. Now let us consider what happens
at a point P where charges exist, that is, r = 0. Let us strxound
the point P by a small sphere B of radius 3 TJEL’& integral

f [ [ {pdr/r) exists i p is continuous, We gleﬁpé ¢ at P
. ViR . . '" 3
as lim [ [ [ (pdr/r). This limit exists, for Gsing spherical
i) "'v_ B «’

coordinates,
U [ [ =
b4 r

where 3 is the bound of p iqj{tﬁé neighborhood of . Thug

]2 2] < e+ 0
VLR ?‘\"‘ v T
8. .
where ¢ is the %idifis of the sphere E’ surrounding P. The
Cauchy criterigm holds, so that the limit exists. In much the
same way weé/6an show that
o

\\"‘ E=ff ‘;—:df | (208)

O
- Wfo% o sm}dr d8 d;a[ < Mn2est

S

T
&

{ u\: * .
<\; and that st a point P where a charge exists

: ot
EP) ~tim [ [ [ 2 ar
—0 ¥y g
converges.
Now from Gauss’s law

L[E-dd=44rQ=4wa[deT
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In order to apply the divergence theorem to the surface integral,
we must be sure that V- E is eontinuous at points where p is
eontinuous. We agsume this to bo true, and the reader is referred
to Kellogg’s “Toundations of Potential Theory” for the proof
of this, Thus

[T[[(V'E)dfz‘h’flfpd” (209)

Since (209) is true for all volumes, it is easy to sec that >

N

)y
V+E = 4wp NS (210}
N
provided V « E and p arc continuous. Sinco J§‘,= —Ve, we have
Poisson’s equation o\
Vip = —4dap N\ (211}
T

AN
and at places where no charges \eXist, p = 0, so that Luplace’s
equation, Vi = @, holds. W
Ezxample 80, In eylindricallfbordinates

13 (a8 o (lag\ o[ o
v z_[_(~*) _(__) 3 ( ¢
PN ) Tae\r o) T U

ar
O

Congider an 1 r{f‘te’ eylinder of radius a and charge ¢ per unit
length. At points where no charge exists, we have Vie = 0.
Moreover,.f.r;om symmetry, ¢ depends only on r. Thus

R
N 1d d@)
Vie==—|pT) =
\“\, ¢ rdr (r dr 0
™\
O de
*— = gonstant = A
AN dr
™ ¢e=Alogr4 B
£ A . .
=-V¢=~;r, r=uzxi—+yi
Also 420 = (Eoe = — 4 /4 50 that ¢ = 2rag = —A/2, and
E- X, (212)

r2
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Ezample 81. To prove that the potential is constant inside g
conductor. I'rom Green’s formula we have

U,ww-da = f!f (Vo)? dr + fvff@vz,pdf

Inside the eonductor no charge existsso that Ve = 0. Moreover,

for any surface inside the conductor, E = —Ve =0 so that

fff (Ve)?dr = 0 for all volumes ¥ inside the conductoh ™
5

dep g dp R\,
Therefore (V)2 =0, and — = —& = =X _ 0, o that &S con-
dx dy a2 g ™

stant inside the conductor, R
0

oo
N

Problems

1. Solve Laplace’s equation in Sphcrica;l\bobrdinates assuming
the potential ¥ = V(). SV

2. Find the field duc to a two-dithensional infinite slab, of
width 2o, uniformly charged. Here e have ¢ = e(x) and must
solve Laplace’s equation and Potsson’s equation separately for
froe space and for the slab,‘ghd" we must salisly the boundary
condition for the potential Wt the edge of the slab. The space
occupicd by the slab iz given by —¢ < z < a, —w <y < oo,

3. Bolve Laplace)s gquiation for two concentric spheres of radii
a, b, with b > ¢ Wi\ﬁh\charges ¢, @, and find the field.

4. Solve Laplafels equation and find the field due to an infinite
uniformly chargedl planc. '

5. Provef.‘i;l'iat fwo-dimensional lines of force also satisfy
Laplac "izg\dﬁation.

6. Show that, ¢ = (A cos nx + B sin nz)(Ce™ + De™) satis-
e 1 % _

'“\ ] ayz ) .

7l ¢1 and gy satisfy Laplacec’s equation, show that ¢: + ¢
and ¢ — o, satisfy Laplace’s equation. Docs ¢ip. satisfy
Laplace’s equation? )

8. If @ satisfies Laplace’s equation and ¢, satisfies Poisson’s
equation, show that ¢; + v satisfics Pojsson’s equation.

60. Dielectrics. Tf charges reside in a medium other than a
Vacuum, it is found that the inverse-square force needs readjust-
ment.  That this is reasonable can be seen from the following
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considerations. Wo consider s parsallel-plate condensor sepa-
rated by glass (Fig. 59). Assuming that the molocular structure
of glass consists of positive

AR SRR R R R E e and nogative particles, the

% GZZ // .electrons being bound io the

nueleus, we see that the field

_____________________ #  due to the oppositely charged

Frc. 59 plates might weil cause o dis-

placement of the electréhg

away from the negative plate and toward the positive uplite.

This tends to weaken the field, so that B = 4o/, whert /> 1.
« 18 called the dieloctric constant. O

It is found experimentally that E = (g¢’/ur®)r for*charges in a

dielectric. Applying this foree, we see that Gausﬁ" #1aw ig modi-

fied to read )
Aar
[[E ds= —Q\\ (213)
; "'\’:.
and if « is & constant, O
f_fxE-dd=H,D-"dd=47rQ (214)
where D is defined as the disp’léc.élﬁent vector, D = «E = —x Ve,
Poisson’s equation becomest¥: D = —v . (x Vo) = 4wp, and for
constant «
o 47p
\'\ e Vzlp = - —;— (215)

N\

Torp=¢ welgtill have Laplace’s equation Ve = 0.
In the most general case, we have
.“\:.
3 9 3 3
,.\’\\ D{ = E Ka"fE,', 3’ = 1._. 2, 3

S ) i=1

™

AN
<\3\V'here D = Dii + Doj + Dk, E = Fii - Eoj + Bk, and kg = 5.
81. Energy of the Electrostatic Field. TLet us bring charges

9, @ . . ., gn from infinity to positions Py Py ..., P, and
calculate the work done in bringing ahout this distribution. It
takes no work to bring ¢, to Py, since there is no field. To bring

gz to Py, work must be done against the field set up by ¢;. This
amount of work is g.q,/ s, Where ry, is the distance between Pi
and Py, In br inging ¢s to P, we do work against the separate
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fields due to ¢; and ¢a. This work is 019s/T1s and gaqy /1y We
continue this process and obtain for the total work

1 i) Iﬂ 0
W=y ¥ (216)
F=1i=1 T

The %+ oceiits hecause 91¢2/T12 occurs twice in the summation

Process; once as qig2/712 and again ag g291/7e1. The quantity W

H

is called the electrostatic energy of the field. Since ¢; = E @/ Bz, |
i=1 ¢ W

R
we have 3 = E gwoi.  For a continuous distribution of,charge,
=1

ad
NN

we replace the summation by an integral, so that i
o\ 7

X
w

— 1
W = Er_[!f pp dr RN (217}
Now assume that all the charges a:ré:cdﬁtained o some finite
sphere. WehaveV.D = 4rp so thab

W=%fp[f@V-Ddf.'=”.\'8—];?f1fv.(@)dr

N
,\'\’\.: _%flfqua.pdf

Applying the dive£g:pﬁce theorem,

x:\"i: 1
N s L “Dd
g fedemg [[[vena
.'\
NOW:QI'E; ‘of the order of 1 /r for large 7, and D is of the order of
17y while do is of the order of r2. We may take our volume
of Mtegration as large as we please, since p = 0 outside a fixed

sphere.  Hence lim f f @D« dé = 0, so that

r—+ = 8

Iv*:érfmff (E-D)dr (218)

N\
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The energy density Is w = {1/8r)E-D. Tor an izotropic
medium, D = B and W = (1/8x) f f | <z,

Ezample 82. Let us compute the energy if our space centaing
a charge ¢ distributed uniformly over the surface of a sphere of
radius ¢. We have

D=E=Zrrze ad D=E=0r<a, o
- L\
The total energy is ~ N

q2 2r row 1 ‘:" \ W
W= ff—sinﬁdrdﬂdgo RS

811'0 g r?

2 N
-4 \Y;
2a

A

62. Discontinuities of D and E at the .ﬁoﬁndary of Two Dielec-
trics. Tet S be the surface of discqﬂﬁilfujty between two media
with dicleciric constant x, and Ky We apply Gauss’s law to a
pillbox with & face in each mjédium (Fig. 60). Assuming no
W\ charges exist on the surface of

N discontinnity, we have

[[Das=0

so that Dy+n, + Dy -n, = 0.
Since ny = —n,, we have

Dy, =Dy, (219

%) Fue. 60,

&

R We have taken the pillbox very
ﬂ;{t o that the sideg contribute g negligible amount to the flux.
"\@quation (219} states that the norma] component of the displace-
Wment vector D is continuous across a surface of discontinuity
containing no charges,
We next consider g closed curve T with sides parallel to the
surface of discontinuity and ends negligible in size (Fig. 61).
Since the field is tonservative,

§6E Ydr =) or By = I, (220)
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In other words, the tangential component of the electric vector
E is continuous across a surface of diseontinuity, Combining
(219) and (220), we have

I_);v_, _ j_h, or KlEJ\rl _ KQEN,
ET. EIT: ET: ETx
Ky 5
n O\
I'{"2 EN
D)
NS
3 ’\”/
Q
Fic, 61, (O
Fre. 62.
for isotropig¢ If)eﬂia. Hence
::\u’ _—
i“\’t -
N fan b _ . (221)

R\

WL

tan #; Kz

Mg

~\Wlich is the Taw of refraction (see I'ig. 62).

/ 83. Green's Reciprocity Theorem. Let us consider any dis-
fibution of volume and surface charges, the surfaces being con-
ductors. Tet # be the volume density and o the surface density.
If ¢ s the potential function for this distribution of charges, then
Vi = —dxp We shall make use of the fact that E = —Vy and
that at the surface B, = 4we, or E+d¢ = —4ao dS.

A new distribution of charges would yield a new potential
function o such that V2%’ = —4rp’. Cur problem is to find
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a relationship between the fundamental quantities p, 7, ¢ of the
old distribution and o', ¢/, ¢’ of the new distribution. To do 20,
we apply Green’s formula

fff (¢ Vi — ¢ Vip)dr = ff(sovso"—w'%)-ds
'

K

which reduces to

~r [[ [ —enir=ar [ [ (o ~ o) a8,
v S A\

N\
or : AN

fff ep’ dr + ff o’ d8 = fff ¢'pdr “f“,i\f‘ e IS (222)
v 3 v \® i

This is Green’s reciprocity theorem.,:l}}'states that ithe poten-
tial ¢ of a given distribution when wmltiplied by the ecrrespond-
ing charge (o', o) in the new distribution and then summed over
all of the space is equal to the sumt of the products of the poten-
tials {¢'} in the new d.istrilqu*t-i’é:ri by the charges (p, #) iu the old
distribution, that is, a reciprocal property prevails.

Ezxample 83. Let, a gphéi'e of radius @ be grounded, that is, its
potential js zero, andiplace a charge ¢ at a point P, b upits from
the center of t e{éphere, b > a. The charge ¢ will induee a
charge @ on the%hcre. We desire to find Q. We construct a
new dist-ributién as follows: Place 5 unit charge on the gphere, and
assume ng other charges in space.  The potential due to this
Cha-rgeck%here is ¢ = 1/r. For the sphere we have initially
¢ =000 = ?, and afterward, ' = l/a, ¢’ = 1. Tor the point P
we\have initially o = ?, g = ¢, and afterward, ¢ = 1/8, ¢’ = 0.

Q"

~4pplying the reciprocity theorem, we have

1 1

014 90 = T Y

2 Q P A
80 that @ = —(a/b)g. This is the total charge induced on the
sphere when it is grounded. Note that this method does not _
tell us the surface distribution of the induced charge.

Problems

1. A conducting sphere of radius ¢ is ombedded in the center
of a sphere of radius b and dielectric constant x, The conductor
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1s grounded, and a point charge ¢ is placed at a distance r from
its center, r > b > a. Show that the charge induced on the
sphere iz £ = —xabg{rb + (x — Da}}-1,

2. A pair of concentric conductors of radii g and b are con-
nected by = wire. A point charge g is detached from the inper
one and moved radially with uniform speed V to the outer one.
Show that the rale of transfer of the induced charge (due to ¢)
from the inner to the outer sphere is

dt N\

N

@ _ —qab(b — a)*iV(a + V)2 '\:,\

8. A splerical condenser with inner radius ¢ and oujgéi" radius b
is filled with two spherical layers of dielectrics 4 and s, the
boundary hetween being given by 7 = &(a -+ BYa\Jf, when both
shells ure carthed, a point charge on the didlectric boundary
induces equal charges on the inner and oufter shells, show that
01Ky = b/a, : o)

4. A conductor hag a charge ¢, and\ ‘V{, Ty are the potentials
of fwo equipotential surfaces whick® completely surround it
(V1> V). Tho space between. ,t;i'}eée two surfaces is now filled
with a diclectrie of inductive cfajaacity k. Bhow that the change
In the energy of the system ige(Vy — Va)(x — Dl

3. The inner sphore og'ma,\spherical condenser (radii e, b} has &
constant churge K, afdd\ife outer conductor is at zero potential.
Under the internal forces, the outer conductor contracts from
radius b to radiudby” Prove that the work done by the electric
forces is %E‘Q(b\:—.. (N T

64. Method‘of Images. We consider a charge ¢ placed at a
point P (Q;Q‘%,"O) and ask if it is possible to find a point Q(z, 0, 0)
such thaf*s certain charge ¢’ at @ will eause the potential over
the ghhere 2 + 4?4 22 = @® a < b, to vanish. The answer is

™\

W™ We proceed as follows: From Fig. 63 we have

8% = 2% L g% — 20z cos 4
12 =84 q® — 2ab cos §

We choose 2 50 that zb — a*, and call Q{a®/b, 0,0) the image
point of P(p, 0, 0) with respcet to the sphere. Thus

: _ @ 2. 2 —a—ztg
s :l-)_“(a + b* — 2ab cos 6) =
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and

goa_ 17,
¢= 8 T i i (aq +a
. N
and ¢ = 0 if we choose ¢ = —(a/b)g
'\t\
:.o\\ ~
L 3 N/
O
¢
15, 0, G
-z

“Frc. 63,

The potential af anvw]é;}int £ with spherical coordinates », 4, ¢

i . \'\s.'
o = N - (a/b)g
(r? -+ B8227 cos 0 2+ (ad/BY) — (2a%/b)r cos O]
N (223)
s

with @§‘ﬂ on 8 and V2& = 0 whers no charges exist.

hoﬁ\ et us consider the sphere of Ixample 83. The function

L ON223) satisfies Laplace’s equation and is zero on the sphere.

\}}‘fom the uniquencss theorem of Iixample 69, & of (223) is the

potential function for the problem of Examplc 83. The radial

field is given by
Eo= - -besp
ar (4 b2 — 2 eog &
' ____(a/byqlr — (a/b) cos 8]

72 4 (a%/b%) — (2a2/b)r cos 8]
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and the surface distribution is given hy

. (Er)r=a _ _ _g_ bz — @2
i drr 4r afa® + b* — 2ab cos g)!
Problems

i. A charge ¢ is placed at a distance g from an infinite grounded
plane. Tind the image point, the field, and the induced surfage
density.

2. Two zemiinfinite grounded planes intersect at right, 4nkles.
A charge ¢ i¢ placed on the bisector of the planes. Whag distri-
bution of charges is equivalent to this system? Find-the field
and the surface distribution induced on the plancgn

3. An infinite plate with a hemispherical bels of radius ¢ is
at zero potential under the influence of & pelut charge ¢ on the
axis of the boss at a distance f from the plate.  Find the surface
density at any point of the plate, and{ghow that the charge is
attracted toward the plate with a fprjce‘

U T
15 0 — o9

65. Conjugate Harmenic Functions. JIf we are desling with
a two-dimensional p,nﬁb}em in electrostaties, we look for a solu-
tion of Laplace’s chqﬁiion V2V = (0. The curves V(z, ¥) = con-
stant represent(the equipotential lines. We know that these
curves are ortho;g;bna.l to the lines of force, so that the conjugate
funetion Uiy ‘y) (see Sce. 58) will represent the lines of force.
We kng that V4V = w27 = 0. _

Walhow give an example of the use of conjugate harmonic
fll{ls‘:ﬁions. In Example 73 we saw that

W Uz, ) = 4 tan™! y
* (224)
A
Vi, y) = o log (x4 %3
are conjugate functions gatigfying'La,plaCB?S equation. If we

take ¥(z, %) as the potential function, then the equipoten‘ziﬂs
e the circles (4/2) log (x* + y?) = C, or a* + 3 = ¢*4
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Hence the potential due to an infinite charged conducting eylinder
is

A A
Viz,y) = Elog @+ %) = 2 logr® = Alogr, 7% =424 42
since 4 log # satisﬁés Taplace’s equation and satisGes the bound-

ary condition that ¥ = constant for » = g, the radius of the
charged cylinder. If g is the charge per unit Iengrh, then

QZ N\
G B e, A O
- ra o A - 4 - 4t \“\ :
BO th.at A - *—29 and V = —2q Iog T, “'( “"‘:

U=  U=UN 0 U=U, #=0
"4 Fie. 64,

P\

If we choose U({N’f) = A tan™! (y/z) as our potential func-
tion, then the equ}sotentials U = constant are the straight lines
A tan~t (y/ e}, or y = g tan (C/A). As a special case we
may take the“straight lines 0 = 0, 0 = 7 as conducling planes -
raised to/dhiferent potentials (see Fig. 64), The lines of force
are th{(ﬁrcles (4/2) log (a2 + y%) = V.

.’.];.He\ theory of conjugate funetions belongs properly to the
theory of functions of a complex variable. With the ajd of the

“\Behwarz transformation it is possible to find the conjugale fune-
tions associated with more difficult problems involving the two-
dimensional Laplace equation,

Problems

L. By considering Examplo 72, find the potential function

a,ndl lines of force for two semiinfinite planes intersceting at right
angles,
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2. What physical problems can be solved by the transformation
z=acosh U cos ¥,y = asinh Usin V? Show that

ViU = VIV =

66, Integration of Laplace’s Equation. Let § be the surface
of a region & for which ¥% = 0. Tet P be any point of &, and
let r be ike distance from P to any point of the surface S. We

make use of Green’s formula, O

1T v —ypvigyar = ff( Ve — V) - dgl D)
Jt © ; @ ?) " AR\
We choose ¢ = 1/r, and this produces a disconti;tfu;igjr ingide
R, namely, at P, wherc 7 = 0. In order to overqizme this diffi-
culty, we proceed as in Example 66. Surroundv? by a sphere
Z of rading e Using the fact that V2 =V = 0 inside &’
. . x'\ ’
(R minus the = sphere), we obtain R

0= fgf (I{p\?% —%V@)-dd+£(:[;’(“é‘vé—%V¢)-dd (225)

Now V(1 /7) = —1/7%, and ogi:}i’é'sphere Z,

vigeo LI TTyg 38
XN oo ¢
and (1/r) o - ds i3t the order ¢Ve], so that by letting € 0,
(225) reduces e,

S — '
:»\'QO - 1 1
oo = Lty - V—)-dd (226)
R\ o) = '(J P TS

4 ‘.\"' 3 ‘
S;‘I‘h'js remoarkable formula states that the value of ¢ at any point
I determined by the value of ¢ and Ve on the surface S, -

Problems

LI Ppig any point outside the closed surfa_ce 8, show that
ff [(1/7)ve — ¢ V{1/7)]+dé = 0, where V% = 0 inside S and
8

ris the distance from P to any point of 8.
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62
2. Let ¢ satisly Vi = — + — = 0. Let I' be the closed

boundary of a simply connected regxon in the -y plane. If P
is an interior point of T, show that

1 1\ & [log {(1/7
o) = 5§ |(10e7) 32 — o TEO 4

where use is made of the faet that O\

ff WV ~ v Vo) dA = 5ﬁ(u_n o s{é‘:~\’

6‘!5

' 4 ’~
S

7 being the normal to the eurve.

3. Let ¢ be harmonic outside the closed Suffﬂce S and assume
that ¢ — 0 and '.-“diof —0asr— . If¥ENE s point cutside 8,
show that \.

o(P) —ff( ‘p—@v 1)-dd

where the normal ds¢ is inw, aﬁr@l on 8.

4, Let ¢ be harmonic a‘hd regular inside sphere =,  Show that
the value of ¢ at the gemter of = is the average of its values over
the surface of the sphere.  Use (226).

67. Solution o\ aplace s Equation in Spherical Coordinates.
From Sec, 23 Prob

Py

1\ “Ta a
Vi = &A_— 2
\1:2 sin o [ar (T sin 8 V) T 5 a4 (sm ? 66)
§ af1 9
ol + — (= -— ={ (227)
R\ de \sin 0 de

o A

9 " To solve (227), we assume a solution of the form

Vir, 8, ¢) = R(r6(0)d(s) (228)

Substituting (228) into (227) and dividing by V, we obtain

gin 4 d( + 1 22
R dr R) 9d8(81n9d9)+®51n6d<p
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Consequently

1d / &R 1 4 ¢in Bde 1 49 99

— —_— P — = — _— —_ ———

Rdr dr O sin ¢ do a6 gin? ¢ & dy? (229)
The left-hand side of (229) depends only on r, while the right-
hand side of (229) depends on ¢ and . This is possible only
if both quantities arc constant, for on differentiating (229) with,

d1d dR \
- e win — | =- = {220 | = e
respect to 7, we obtain o [R E» (*r dr)] . We @0&5{5 as

the constant of integration ¢ = —n{n + 1), so that

S

N/

1d/ dR
— 2— = — oy g
Rdr(rch) nn + N

or O
. 7\
2 jTiB -+ 2 % + nin ;{~3\1)R =0 (230)

It is easy to integrate (230, and:‘:\ié leave it to the reader to show
that B = Arn 4 Bra—1 55 thel most general solution of (230).
Returning to (229), wo havel®

1 d% A\ sind d /. ﬂj
ZTE ) infg - ——|sn §— 231)
B dot n\n;}l 1) sin? § o 75 (s 70 (
Since wa llaW:;"é,gajn separated the variables, both sides: of
(231) are copsiant. We choose the constant to be negative,
—m?, m Lo,  an integer. This choice guarantees that the solu-
tion of \\J
O\\ 42
‘.\'Tf” - +m® =10 . (232)
,..\: dp
\iS' single-valued when ¢ is increased by 2rx. The solution of
(232) is ® = 4 cos me + B sin me.
Finally, we obtain that 6(8) =atisfies

gin ¢ L—% (sin 8 %) + [n(n + 1) sin? 8 — m’j6 = 0 (233}
We make 4 change of variable by letting p = cos 6,

du = — sin 8d¢
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50 that (233) becomes

= g0 - @ R0~ + 1) o

=0 (234)

If we assume that 7 is independent of ¢ (symmstry about the
% axis), we have m = 0, g0 that {(234) becomes
N\

LA R nn+1)6 =0 () (233)
du da R

This is Legendre’s differentia] equation, N\

<

By the method of series solution, it can bc,\szio'ﬂrzi that

L A
2l ,‘@E“

W

0= Pu(y) =

S . N\
satisfies .(2_35); the P, (u) are called Legendro polynamials.
Two important properties Of Tegendre polynomials are the

following: $
1 s“.:"v
f_1 Pvrf(n)Pﬁ(#) de =0  ifms=p (236}
(B gy - 2 281)
&\ = T (
We give:a pm“of of (236). P, and P, satisfy
x:\u' d N
O« dP,
\\\ n [(1 — u?) E;] +an+ 1P, =0 (238)
o) -‘1[(1 ~ ) En _ (239)
~\D du P + m(m 4 )P, =0
N/ *

Multiplyi ' .
obiain ?mg (238) by P, and (259 by P. and subtracting, we

d dp
Pm'__ 1‘-— ) g d de
Al d#]““a[“““m]
T nn 4+ 1) — mim + )PP, =0
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or

d dP.
&1[(1 M) (Pm d,u sz d,u)]
+ [n(n + 1) — mm + 1IPP, = 0 (240)

Integrating between the limits —1 and 41, we obtain

[nin + 1) = mGn + 1)] [ PaPudu =0

and if m # a, Y

[l PPidu=0 : .a}
A partioular solution of (227) which is mdepende,nt of (,o, that
1 ~N
is, Py J, is given by V{r, 8) = (4. + B,.'r?*’—l)P {(cos 8).
@
Now it is rasy to show that any sum of ,so}lrtlons of (227) is
also a sohition, since (227) is linear in V \Consequent]y a more

gencral smuimn 18

= 3 (A FBY"1)Pu(cos 0) (241)
n=0 SN\

Provided ihat the serics,eonVerges.

If we wish to solve @ problem involving V2V = 0 with spherical
boundaries, we trg\(241) as our solution. If we can find the
constanis ‘lﬂ, B{A0" that the boundary conditions are fulfilled,
then (241) will epresent -the only solution, from our previous
uniquenegs Alieorems involving Laplace’s equation.

We llsﬁ%‘feﬁ Legendre polynomials:

\“:' iugﬁig = 1
& \ud ) = u .
N/ Pa(u) = $(3p* — 1)

Py(i) = 3(5p® — 3p)
Py(u) = }(35ut — 30s* + 3)
Po{0} =0, n odd D
1-3-5 - (n-
] — 1% T f even
Lh(0) = (—1)2 9461

P(l) =1 - .
Po(~u) = (—1)"Pu(u) ¢

(242)
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Problems

1. Prove {237).

2. Bolve ¥V = 0 for rectangular coordinates by the method
of Sec. 67, assuming V = X(z) YinZz).

3. Investigate the solution of V*V = 0 in cylindrical cocrdi-
hates.

68. Applications

Erample 84, A diclectric sphere of radius ¢ is placed in n.uf%
form field E, = Ek. We caleulste the field inside the sphere.
The potential due to the uniform field S = —FEpz = — Edets 8.
There will be an additional potential due to the prcseri«:.% of the
dielectric sphere. Assume it to be of the form ArPi="Ar cos @
inside the sphere and Br—2P; = Br? ¢o3 # 011t-sitl§e the sphere.
We cannot have a term of the type Cr2 cos B.in}ide the sphoere,
for at the origin we would have an infinitefidld caused by the
presence of the dielectrie, Similarly, ifys term of the type
Dr cos 8 ocourred outside the sphere, w8, Would have an infinite
field at infinity due to the presence & the sphere. If we lat T
be the potential inside and V), the potential outside the sphere, we
have N

T = —E"gﬁ'}:é_s 6+ Ar cos ¢

2 b
Vi =AFEw cos § 4+ —cos 4 (243)
o\ .orR

\J
N/

3
Notice that V; azndﬁf'n are special cases of (241}, We have two
unknown constimts, 4, B, and two boundary conditions,

.»\:;,\“' Vx = VI_[ ﬂ.t r=a

\/ 9
.‘s'\\ Dy, = Dy, or K "‘HEI- = %VE atr =g (244)
&l r il

*

¢ ..\"

\?sﬁé" ec. 62). From (243) and (244) we obtain

£—1 k—1
A= E = b
cdzm B=di—H
so that ' '
i = — Ewr cé36‘= _.3 By (245)

k42 K4 2
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We sec that the field inside the dielectric sphere i

3
_— ___V —_——
E = Vy T3 E,
and E is uniform of intensity less than E; since « > 1. Outside

the sphere

£ —1agd
VU_ or cos + . + 3 2 Eu cos (24;6)
)
The radial field outside the sphere is given by O
. z’~:"
_ aVH . K — ]. as Eu ,".\ ’
Jr = — —— = 2 . ..6
E ™ Eqcos 8+ 1 2 ‘-’"~3,"~§QS
For a given r the maximum E, is found at S;O.

Example 85. A conduct-
ing sphere of radius a and
charge @ iz surrounded by a
spherical dielectric layer up &
o r =5 (Fig. 65). Let us o
caleulate the potential digss®
tribution. TFrom  spherical
symmetry V = V(r), 56 that
we try \\ '

N

VI - .ﬂ_\}

AL
w2 ¢
O
T;ls“ﬁtiundary conditions are.

m; VIZVII&tf=b
(if) Vi _ Vn
ar
4

,...fz'fr(?—-[ﬁ—[) a?sin 8 d8 de
4qr s JO dr Jr=a

From (i) A/b = (B/b) + C; from (i) —A/b* = —xB/b%; from
() @ = («/47)(B/a®)[ [dS = «B. Hence

atr=2=50

ar
i) Q== [ Drdo= -
T g
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—1
R A P L. (247
r kr bk

Example 86. A condueting sphere of radius a and charge €} is
placed in a uniform field. We calculate the potential and the
distribution of charge on the sphere. We assume a soluiion

B
V = —-Eorcusﬁ—{--;

N
The boundary condition is 0,\ )¢
e) ~
L
e R <“~’«.
80 that Q\
1 2x ‘ 4
Q=aﬁ] f (L'ucosﬂ-f- ){ 3ih 8dfde = B
and \‘
V= —Egcost+ q \ k:
PN
For the charge distﬁbutggtﬁ;‘
(E in - %T{ 1 Q
LS Y. T {rem
= & \u = [— g il
\ i (Eu cos 8 4 )

Ezample 87 Consider a charge g placed at 4(5, 0, 0). Iot
us o) pute the potential at any point P(r, 8, ¢) (see Fig. 64).
Th? p oteniial at P is

\ V =2 = g(r? + b* — 2rb cos 6)*

‘
/
% b

~O .
N/  There are two cases to consider:

{a) r < b Letp=cos @ = = r/b sothat
V= %(1 — 2uz 4 22

Now (1 — 2uz 4 2%} can be expanded in a Maelaurin series in
powers of z, yielding
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>_ 9 \ " __ q 3 ™"
V= b,zo Pulu)ar = ann Pry) (g) (248)

The prootf is omitted here that the P,(u) are actually the Legendre
polynomials. Ilowever, we might expect this, since ¥V satisfies
Laplace’s equation and P,(u}r* is g solution of V2V = g,

z O\
f

alA (6,0,0 S

AN
3 N/
s . N
Pir,0,¢) O
b \:3539
r N
K7

8 o\

0 N -

< .:{’
&
\\\.'
X
NS F1c, 66.
<
) r > ,Q\In this cage
"\:~ -] 0
N y =2 p, (") (219)
J.{\ Tnzo (H) r

Nﬁ"ﬁce that each term is of the form P.(u)r—"% which satisfies
‘\"}-faplace’s equation.

Ezample 88, A point charge ¢ is placed at & distance b
from the center of two concentric, earthed, conducting spheres
of radii ¢ and ¢, « < b < ¢. We find the potential at a point P

forg < ¢ < b
Forr>p V= {g/7) E (b/r)"P,(cos 8) due to the charge ¢;
) .

and for r < b, V = (g/b) D, (r/b)*Pu(cos 6). Moreover, we have
D .
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an induced potential of the form

V=g)(dsr+ B 1P, (cos 8)

(=]

which 1s due to the spheres, the 4, and B, undetermin
Hence .

For r > b:

[Brc. 63

(250)

ed as yot.

N\
ns‘ X N
vV, = 92 (A 4 (B, + br-1P, (cos 6) A
1] " ¥
A\
For r < b; - \ "'\(201)
il . '\N"S
Ve= g3 [(4n + b1y 4+ Ba==1P,(ebdd)
L] ,~s\
A,
The boundary conditions are \
N
() Vi=0atr =8 -
(i) Vo= 0ntr g (252)
These yield the equations .;3:{.‘
@ Auem 4 By F bt = 0
(i) (Aa + bjt"l)a“ + B.g™ 1 =
~\
50 that L)
@it g2kl '__‘\212734—1)"
= b+ (gl czn+1)’
i“\:}:\” A, + bty o bi(e2n ! — peH)

No/
Hencg;\\
™

a?n-:'—'l — CEvi.+ 1

g;\;:; d bl2n+1 — pintl antl . ) )
Q( ) =4q HZO b""’l(a%_*‘;jcm'lj (?"“ - ;n:) P.(cos 8)  (258)

Problems

1. Show that the force acting on the sphere of Exaraple 86 is

F = $QEk

2 f't charge ¢ is placed at a distance ¢ from the center of a
spherical hollow of rad 1us @ in an infinite dielectric of constant «.

Show that the force acting on the charge is
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k=g ¢ anr41) -(c)““'

e Lntsn+ D\a

1
w

3. A point charge ¢ is placed a distance ¢ from the center of an
earthed conducting sphere of radius @, on which a dieleetrie
layer of outer radius b and constant x exists. Show that the
potential of this layer is '

2 9 13b2nti(pn — gontlen—i
y=1 y (2n + 1) (" — g ) Pleos )\

¢ Lyl + Dn + 157+ (01 (e — Daeri]
oA\

4. Show that the potential inside a dieleetric shell of inkérng]
and external radii @ and b, placed in a uniform field of sﬁzprig’th E,

7
 {

O \‘
— g’
V= 21 — k)[(b/a)? — 1] A&
AY;
5. The walls of an earthed rectanglﬂg’;)onducting tube of
infinite length are given by z = 0, & =45 =0,y = b A point

charge is placed at & = zo, ¥ = yo, 2, =2 inside the tube. Show
that the potential is given by 3%

e
N

18

o o0 st
ARy oy L ) . REXs
V = 8¢ 2, (m?*u® 4 ’n%bg)'**e*“ ol e e a2 gin f
n=1 m=1 m\w
¢ \J . nwY . WElys . mry
\\ sin — gin sin —
a b b

69. Integratiog ‘of Poisson’s Equation. Instead of assuming
that ¢ is hawfadhic, let us consider that ¢ satisfies V2 = —4up.
By &pph'iq,g\.ﬂ;reen’s formula as in See. 66, we immediately obtain

N\

) 1 ¥
\\\ ¢(P) = [I!ffdf+[gf Gw—w;)-da (254)

If we make the further assumption that ¢ is of the order of 1/r
for large » and that [¥g| ~ 1/r, we sec that by pushing § out to
infinity the surface integral will tend to zero. Our assumption is
valid, for if we assume the.charge distribution to be bounded by
50Ime Sphem, then at large distances the potcntial will he of the
order of 1/7, since we may consider all the charges as essentially



N\

From (256)
’"\ N’
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concentrated at a point, Thus

oP)=[[] 'fdf (255)

70. Decomposition of a Vector into the Sum of Solenoidal and
Irrotational Vectors. In Example 70, we saw that if If| tends to
zero like 1/r* as r— oo, then f ag uniquely determincd .bfNits
curl and divergence. F

We now proceed to write f as the sum of irrotational and
solenoidal vectors, ILet O

%

.

o) &

Q }
7

where 7 i3 the distance from P to the element of integration dr.
If we write f = fil 4 fyj + Fok, W =“%i + Wi + Wik, then

W= Ii:{:.f’%‘df

walk [ [ [l (257)
. o\ *
\'\‘:;\Ws = f.[f'?df

We assume‘t{ié{f ‘the components of f are such that the integrals
of (257) converge and that (W] ~ L/r, [WW,| ~ /1% n = 1,23
From\Seq§~69, VW, = —dxf,, s0 that

W\ VIW = —4xf (258)

W= [[[tvla
VxW=ffffxv;}dr

Vx(Vx.W) =V .-W) - v2W

(259)

Now
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so that
f:iVx(VxW) *—I-V(V-W)
Aw 49
and hence
f=VxALv, (260)
where
A=tvxW, o=-lo.w N\
dar 4 A
. ¢\
Problems . O
L. Bhow that (256) is a special case of (254). '“’\m:"
2. Tind an expression for o(P) if Vip = —4mp inside S and if
P is on the smrface S, \/
3. f = el + x2j + (xy — 22}k, Txpress a5 the sum of an
irrotaticnal znd a solenoidal vestor. O

T1. Dipeles. Let us consider two ngig]}boring charges —g and
+¢ stuated at P(e, ¢, 2) and Q(z + 92, y, 2). The potential at
the origiz: 0(0, 0, 0) due to —¢q is¥=g/r, and that due to }g¢ is
¢/(r + dr), where r = (2 + y2 3 20 and

r+ dr =#«’G‘.“T— dz)? + y* + 24

A ,
The potential at O((k{f\,,()) due to both charges is

o\ g g 9 dr

R ™

:\ w .
Now dr Bdz/r, s0 that ¢ = gz dz/r If we now let g— o
and d:c,‘—\§j in such a way that ¢ dz remaing finite, we have formed-
whatikmnown as a dipole. Let r be the position vector from the
Ungl}t to the dipole, and let M = ¢ dr, where dr is the vector from
£ negative charge to the positive charge; [dr| = dr. We have
(M .x)/rt = (gr « dr)/r% = (qz dx)/75 so that

M.z (261)
?-3

@ =

M is called the strength or moment of the dipole. For more
than one dipole, the potential at a point P is given by
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e (M- 1)
o= ) T
=1 n

where 1; is the vector from P to the dipole having strength M,

Ezample 83. The field strength duc to a dipole is E = —vg
s0 that
r«M 3(r- M) M

Example 90. Potential energy of a dipole in a field of poﬁﬁ}?&éal ®.
Let o1 be the potential at the charge ¢ and o, the’pp}ent-ial at
the charge —g. The energy of the dipolo is N

W=+ ea(—0) = gles — on) = qgfé‘g? Mg—j
where ds is the distance between the clmg@*és. Now

de = ds Yo ;
so that W = Mgg- Ve - M ::Véé. 3

72, Electric Polarizatiqn.";‘ Let us consider a volume fifled
with dipoles. The potential due to any single dipoie s given hy
(261). If we let P be fhe dipole moment, per unit volume, {hat is,
P = Jim (AM/A({;\gth’en the total potential due to the dipoles is

=0
\\ o= £ / r;ap dr (263)

:"\:f
Nm;{%f’(l’/r) ={(1/Nv-P - [(P. r)/rfl. The reason that we
have taken v(1/r) = T/7® instead of —r/7" 15 that
AN

\"\; r=lE -2~ (¢ — 2

snd V performs the diffcrentiations with respect to 2, y, 2, the
coordinates of the point P at which ¢ s being evaluated. The
coordinates £, 1, { belong to the region K and are the variables of
integration, and r — (¢ - i+ (o — 9 + (¢ — 2k, Ilence
(263} becomes

so=f£fv-@)drﬁf£fv'z’dr

r



Suc.72]  STATIC AND DYNAMIC ELECTRICITY 159

and

@=L[$-dﬁ~f£fv;PdT (264)

by applying the divergence theorem.

Frzample 1. Tet us find the electric intensity at the center
of a uniformly polarized sphere. Here P — Pk, s0 that v - P={0
inside 8. Ilence (264) hecomes

L\
Pk - do O
ey, 2) = fg / (e =2+ =9+ ¢ 9T

“and ¢

-~
C vy = _ [ Ptk dO)[(t — 2l + @S+ (¢ — 2k
R U (& — 20+ (o 530" + ¢ — 9%

SR ot P
Now for points on the sp.her%;j;;.’ﬁ."
EQ:F';% + P=af
and letling £ = ¢ sirﬁjE&\cos ¢, m=asinfsing {=acosf it
is easily scen thag (266) reduces to
\ E(, 0,0) = —4rPk (266)

Eis indﬂpéﬁhent of the radius of the sphere. By superimpos.ing
(COn(:e\ Méally) a sphere with an equal but negative pOIaI:IZEL-
bonadyd see that the field at the center of a uniformly polarized
Shells zero,
N Problems

L. Prove (262).

2. Prove (266).

3 If MJ. and M, are the vector moments of two dipC‘IBS at A
and B, and if r is the vector from A to B, show that the energy
of the system is W —= M, Myr—% — 3(M, - 1)(Ma - 1)r %

4, The dipole-moment density is given by P = r over a sphere
of radiys q. Caleulate the field at the center of the sphere.
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73. Magnetostatics. The same laws that have held for slee
trostatics are true for magnetostatics with the exception that
Vipn = 0 always, since we cannot isolate s magnetic charge,
We make the following correspondences, since all the laws of
electrogtatics were derived on the assumption of the inverse-
square force law, which applies ecqually well for stationary
magnets. '

Electrostatics Magnetostatics O\
Eer——H N .
g gn R\,
D «———— B (magnetic induction) L
K e———— u {permeability) ON(267)

D=kE—————B=,H D
w=3E-De—— .4 =+tH B “\

v:D ‘—_-47,0(--—-—-——-—)V.B = {}

A
74. Solid Angle. Let r be the position{yector from a point P
N to asurface of area @S and unit normal N, that
is, dé = N d8. We define the solid angle sub-
tended at P by(the surface dS to be (see Fig.

67) R
r :
: r-dg
L i = =5
P s 2\J
\t\ . .
. Fre. 67, Fhe'total solid angle of a surface is
\& -
> - T ds
‘\s\ @ = ff 3 (2{)8)

E:{a}ﬁple 92. Let S be a sphere and P the origin so that

) 4

o) = [ [Ty _-

pd

Example 93.  The magnetie dipole is the exact analogue of the
electric dipole. We consider g magnetic shell, that is, a thin
sheet, magnetized uniformly in a direction normal to its surface
(Fig. 68). Let 8 be the magnetic moment per unit area and
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assume 8 = constant. The potential at P is given by

pm [[ T e ]

Now et 7 and @ he opposite points on
the negative and positive sides of the
surface 5. We have

o)) = —fdr — Q)

so that the work done in taking a unit
positive pele from a point P on the nega-
tive side of the shell to a point ¢ on the
positive side of the shell is given by

W= [PHar = — [P0 a1 2P — o@)
= 60 + S4r — Q) \

W 4B (260)

ny
Ny

76. Moving Charges, or'Currents. If two conductors at differ-
ent poteniials arc joined “together by a metal wire, it iz found that
certain phenomena ogdur (heating of the wire, magnetic field), so
that one is led to\bﬁheve that & fow of charge is taking place.
Let v be the veloeity of the charge and p the density of charge.
We define chafent density by j = sv. The total charge passing
through ::L’Surface per unit time is given by

& s [

N,
NS

O )
S Now the total charge inside a closed surface S is Q= fff p dr.
i

If there are no sources or sinks inside S, then the loss of charge

9 .
Per unit time is given by — — = — f f f dr. Thus

f[pv dd——fff—'df
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Applying the divergencc theorem, we havo

ad
Ve (ov) + ﬁ =0 .
or (270)

dp
.3 —:0
v J‘f—at

Equations (270) are the statement of conservation of el(‘cirlc
charge. We define a steady state us one for which p 18 IQ{J&DEDd-
dp e

ent of the time, 5— = 0, which implies v . i=0 O

L 3

Tt has beon found by experiment that if E iy 'E'-he Hectric field,
then A\ N

=AE = —) v@\‘ (271)

where A is the conduetiv ity of the Ih}tal This is Ohm’s law.
For the general case, 4, = ZN@L,‘;, and the simplest case,

A= ¢onstant, so that Vip = ‘{}for the steady stato.

We now compute the Rt 01‘1& done on a charge g a3 it moves
from a point of potentizhe; to one of potential @3, @3 > @5, The
energy at o1 is go, };‘m}at ®2 15 go3.  The loss in cnergy is

ST W = (o= gy

This loss in elf’etl 1cal cnergy doos not 20 Into mechanieal energy,
sitce the How is assumed steady. Hence the clectrical cnergy
is conve\med into heat, Q = (¢1 = @)q. The power loss is

, dg
P ?s 5 (1 — ©2) —, and since ¢; — o, = RJ {another form

:Oﬁ Oh.m s law, where R 18 resistance and J current), we have

\‘;

P = Rje (272)

76. Magnetic Effect of Cuzrents {Oersted). Experiments
show that eleetrie currents - produce magnetic fields, The
mathematical expression for the mugnetic ficld i Is given by

d < JT xdr

epd

(273)
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whete r is the veetor from the point P; P is the point at whieh we
caleulate the magnotic field dH due to the line eurrent J in that
portion ol the wire dr, and ¢
is & constant, the ratio of the
electrostatic to the eleelro-
magnetic unit of charge (see
Fig. 69). DBiot and Savart
established this law for

Q tg:n)g'}

straight-line currents, QO
Tor a closed path OV
—_— ‘,\: e
H - (ﬁxs_dr (274) P, y,a
er Fra. 690
o\

Now r = [(6 = 2)* + (0 = 9)*+ (¢ — 2%, WA V() = 1/,
g a d ~NY;
where Ve=i-- 4 j— 4k~ Fonce /O
ere ! di + J Jy Tk dz (nce“\ v

X 3

17 1 RO
H:—éJV— xdr‘@k-éVx(—dr)
e roo SN ¥

N <
LN

since ¥ doos not operate @f};.‘(fr and J i3 a constant. Thus
H=vxA, whee A —'\(\l/c) ?S Jdr/r = (1/c) [[f jdr/r is
' O ®
mtegrated over all spate containing currents.
Now v-A =\ G ar = [ [ Gy - do, so that if an
N s
furrents licfathin a given sphere, we may push the boundary

of B to infihily, since nothing new will be added to the intcgral

#

;YiEIdiILg\ . But when § is expanded to a great distance, j = 0
on 586 that that v-A = 0. Also

Y VxH =V x(V x4) = V(V-A) — VA

N\

0 that V x H = —¥2A., Now since A — (1/¢) fffjdf/i": or

A= /ey [ [ [goane, 4, = o) [ [ [ dvarrr,

a= 15
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we have from Sec. 69 that VA = — (4n/c}j. Thus
4
VxH= f j (275)

FEzample 94. The work done in taking a unit maguctic pole
around a clogsed path I'in a magnetic fleld due to electric corronis
is N\

-

W=915H-dr=foVxH-ddl=%-f8f§‘z\(§;§;\'.

- . . l‘.‘}
For an electric current J in a wire that loops Iy%e have

N\
dr N\ %
& x:s\\" .
—-.__T‘\v

Ezample 95. The magnetic ﬁ’éld;at- a point P, r units avvay
from an infinite straight-line wite carrying a eurrent J , 18 obtained
by usc of Example 94 N

TN
N
al

N\ 4 y
9SH s dr = H,(garr) =Ty so that H = 2/
AN 6

cr

&\J
Ezample 96. “We compute the dimensions of ¢/4/kn. Now
fe = qu.z’/‘fz‘.%f:?)’ld .fm = Qm@?mr/#?"z 20 that
PN

D BAL] _ lel _ Ll
\O [T1 WL ™ [z
and ™
o\ Ul _ lda/dt] _ lq] _ [MPHL
® el el T T T e
From (276),
Work dar
Uit poie ~ P H-d6 =7

g0 that
(ML) L

[T~ g
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and

(OPLE  [MPLP

[TH)? [e)lT?

=)= [7]

We see that ¢/+/p« has the dimensions of speed. We shall soon
see the significance of this. O

vielding

LY @
Fia, 70; ‘j.o‘

77, Mutual Induction and Ac’hon of Two Circuits. Consider
two closed sircnits with currents Ji and Js (Fig. 70). The
magnetlc field at O due toJf is Hy = ¥ x A, where

o\ \ Jl dar
{} Al = - -
e Sy

We define the mutual inductance of the two cireuits as the mag-
netic flux fhr{)ugh the surface B due to s unit current in (1).
This is \\

§' M= fo H, dé = L[VxAI-dd

o ) 1 ( drl)
&\ — sy = — = ]).dr
N/ = J Ardr ¢ .[(2) W r :
Henee '
1 f f drl drs (277)
T~ lalo oy

agnetic field, so that

The current element J, drp sets up a m
any magnetic

from Newton’s third law of action and reaction,
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field will act on /5 dr, with an equal and opposite force. Thus
NENE 1 .
di = J,dr, Xle;‘( drle—)xarz (278)
e (1 r
and integrating over (2) we obtain

, J1Js | 1
fz c ﬂg)dl'zx (l)vr xdrl

Now N\
[ 1 T AL
dr: x | V= x dr, =V (dri-dr) ~ drg-v;.&rl\
r ) EANK

and f, ldr; v (1/r)] dry = ‘/;2) d(1/r} dry = 0, sa tha‘c

. 4
AN I

e I ’ .
f N _C‘_ ./;2) j(.].) (v ;) ({r% \ drz) . \2{3)
'X'\ w

This is the force of loop (1) Qn':}\oop (2). Tt is equal and
opposite to the force of loop (2} an’loop (1), this being immedi-
ately deducible from (279) whéihwe keep in mind that

v.ol_ = ¢ _l_
2z a1 Fiz
In (279), F=Par e\

Ezrample 97, ~\(‘e‘find the force per unit length between two
long straight garallel wires carrying currents J, and J,.  We use
(278) and the result of Example 95. We have H, = (2/,/cd)i
at right g\ng}\eé to the plane containing the wires. Hence

\ aF 2 J
’§~.: df = J, dr, x;d—li:_czﬂ_ZdHXi

¢and the force per unit length is F = 27,7 2/cd.  If the currenis
\./ . . - .
) are parallel, F ig an attractive force ; if the eurrents are opposite,
F is a repulsive force,

Problems

L. From (278) show that £ = J, f [ do: x @ x 1.
B

2. Find the force between an infinite straight-line wire CATTYING
a current J, and a square loop of side @ with current ./, Lhe
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extended plane of the loop containing the straight-line wire, and
the shortest distanee from the wire to the loop being d.

3. A current J flows around & circle of radius @, and a current
J' flows in a very long straight wire in the samo plane. Show
that the mutual attraction is 4mjJ "fe(see @ — 1), where 2 is
the angle subtended by the circle at the nearest point of the
straight wire, '

4. Bhow that & = (J/e) ff dé x V(1/r) for a current J in &\
3

closed Joop bounding the area .  ¥For a small cirenlar loopy 5hbw
that A = (M x r/»%), where 1 is very much larger than ’g-h’e}adius
of the loop and is the vector to the center of the circlgpand where

; &

M == [/ D
A

78. Law of Induction (Faraday). It /has been found by experi-

ment that & changing magnetic fieldproduces an electromotive
force in a civeuit. If B is the miagnetic inductance, the flux

through a surface S with boung]gr"g% eurve T'is given by f [ B -ds.
ol T s

¥

]

The law of induction states TRat
167 '
& di=¢ E.
N\ c\é)} f f B ds 961‘ ar

Applying Stokedtd theorem, we have
I
&/

\\d 1B (280)

»
&
&l

o

*

2\ .
N\The time rate of change of magnetic induetance is proporthnal
to the curl of the electric fisld. IEquation (280) Is a generaliza-
ton of vV x B = 0, which is true for the clectrostatic case in which

JB
B = 0 and for the steady state for which o 0.

79. Maxwell’'s Equations. Up to the present we have, for an
electrostatic fil d, VxE =0 vV.-D = 4xp and, for stationary
Cirrents, v « H = (dw/c)j, v-B = 0.
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14B . N
Now VxE = — = S 5o generalization of ¥V x E = (),
Maxwell looked for a generalization of Vv x H = (4r/e)i. e

decided to retain the two laws: (1) V- D = drp as the definjiion

5} .
of charge, and (2) v.j + a—f = € as the law of conservaiisn of

charge, A
Let us assume \
PR Oy
VxH ="+ o Ty
Q“K
as a generalization of V x H = (4z/c)j. We ta@\rhe diverzence
of (281) and obtain QS
0=V j+v O (282)
. 2N
50 that ’\\.
dp
V. = V.7 =" ‘:-“ V. D
x j= a ( )
- (@x ?33)
D
We can choose % \g-%t s 50 that
Q" 1 4D
NS F
O VxH= -—( — -—) {283
e .\ X + dr ot ) )
z'\.{' .
~NT 8D
We qal\l‘m —; the displacement eurrent,
A0S 4 Bt
'\‘ Ve rewrite Maxwell’s equationg
)
(i) VD = 44,
(i) V-:B=9g
1
(iii) VxE= %8B (284)
¢ ot

(i) vaZ%”GJrii‘?)
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We have in addition the equation

() f= p(E + %Y xB) (285)

where f 1s the force on a charge p with velocity v moving in an
electric field E and magnetic inductance B, This result follage™
i
from Sec. 77. r:\:\‘
Problems O

Fat the equations of motion of a particle of mass m

1. Show
and charge ¢ moving hetween the plates of a pa. allel-plate con-
denser p ing a constant field £ and subjestéd to a constant
magnetic Field H parallel to the plates are O
:t\ V4
dz iy
— = Ke e >
R S T
d?y v
—— = g
™ E

A dy A

=0 2=y =0 when {=0, show that
g T ANt T YT e |

T = (E/eH)1 — CO\S‘\@]Z’), y = (E/oH)(wt — sin wf), where .

Given thaf

He
AW - o = ——
O m
\: | B
2. lf“{&r? (i) of (284) shiow that V- — = 0.
:3\;‘?‘rom (i) and (iv) of (284) show that
~O
\/ . s . _ 5
V= a7y

. & Write down Maxwell's equations for a vacuum where
}1=p=0,D=E,B=H. .

80. Solution of Mazwell’s Equations for “Electrically” F"ree
Space. We have s = j = 0 and «, 4 are constants. Equations

(284) become
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(1) V:E=0
(i1) vV-H=0
. _#H
(iii) VxE = sy (286)
X 6E
i H=
{iv) V % vl
We take the curl of (iii) and obtain ~
dH "\
Vx{(VxE)=V(V-E) -~ VE = ——V
at\ v
or O
’E OY
g = A OE (287)
e g o\ N
by making use of (i) and (iv). Similzp‘l}n)
,.___,___*
v < S28 WH (2874)

Ne' A

's

Equatlon {287) representsa three-dimensional vector wave eqtla-
tion, To illustrate, gensider & wave tray eling down ihe x axis

with velocity 7 zm&\posa ssing the wave profile Y =

flz) at

{=0. Atany t\ﬁie’{ it Is easy to see that y = f(z — Vt), From

Yy = fla — Vz) we ha,vea— ="z — Vi) and

.s\,/
:?;‘J d
O° L vy - T
™\
so\bhat
o) Py 1oy
dx® V2 ai?

(988)

Equation (287) represents three such equations, and ux/c? plays
the same role ag 1/V2 so that e/ Vg g« has the-dimensiong of a

velocity (see Example 96). ¢ = 3 X 10" by experiment.

Ezample 98. We solve the wave cquation V°f =

spherical coordinates where F=flr, 0.

19

V? c’}i2
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V=S =gt

VY = v-(ﬁ) =£V~r+V(£)-r
r r 7

e e 2

y T V= Sy
o N
Our wave equation is "
£\
Ff 26 1 9% A Qur?,
it e =i @)
. l“.‘&
Now lot wu(r, #) = rf(r, £); then '3}“\ ’
\/
o louw P 15% gau’\.m
& e o7 a2 7 gt 2 {1?'; 3
and substituting into (289), we obtain N
8%y _ 1 ai’u ~
ar? ]72‘ B'tg
of which the most goners] so}lrbmn is
ulr, 1) =€(»<\— Vi) + hr + Vi)
and so \\ ’
‘”(?‘ 3}’2 - [g(?‘ — Vi) + h(r + V)] (290}

is the most ;,e\nera.l solution of (289).

"/

Let ug ;hm try to determine a solution of Maxwell’s equations
for the\caae E = E(z,t), H = H(z, t). )
O, (z, t dE.(x, ¢
\I%V E—Osothtag(zz) (x)+ =0
dx ay oz

¥

which Implies —'&-—g) = (. Wae are not interested in a uniform
field in the x dlrccuon 80 we choose B, = 0. Hence

E = By(e, )] + E(s, Ok
and similarly :
H = H,(2, 0] + Huz, Dk
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aH
Now we use IEq. (iii) of (286), Vv xE = — %a—t: so that
i j k
o 8 a|_ _wel, s,
az ay oz ¢ ol T a
0 E, E.
o : ' A
) oF, 7] BH&, A ¢
® e et &)
' e Xy
" - IF, _ EGH,, ad B
@) B e A A
'\’\.
Similarly, on using (iv) of (286}, we obtain 3N
@ dH. k0B, N
' da ¢ az\‘ 262)
. AH, «GENY
(i) — = ——=\J
oz c\»ﬁt,

The four unknowns are E,, E’g,"}fy, H,, which must eatisfy (291)
and (292). If we choose Hy'= K, = 0, we see that (i) of (201)
and (ii) of (292} are satigfied. Differentiating (ii) of (201) with
regpect to x and (i)@{?!ﬂ) with respect to f, we obtain

O P _wo,

- (203)
P \% dr? c* 8
We leayerit'to the reader to show that
o\ i .
\ 2fy. 2,
R OH. _ px°H (204)
N ax? c? a

;n\ s "

These equations are of the type represented by (288). Hence
a solution to Maxwell’s equations is

E =[E®C - Vi) + E,2( + V)
H=[H®@ - V) + H.O( + Vilk
where ¥V = ¢(u) .

Both waves are transverse waves, that is, they travel down
the 2 axis but have components perpendicular to the z axis.

(205)
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Alse note that E+ H = 0, so that E and B are always at right
angles fo sach other,

By letting H, = B, = 0, we can obtain another solution,
E = Ez, )k, H = Hy(z, )j. These two solutions are called
the two states of polarization, the electrie vector being always
oriented 507 with the magnetic vector,

Ezamplc 95, We compute the energy density,

_D-E_«E* B N
LT Ty T Ty A
B-H H? uH? B2 P/
wm = = - = — = ws 87
2 2 2 2 .

N
and w = w, + w, = 2, = 2w, = &, and fm;’beth' waves
w, = «(E,?2 4 E.2). Wo have here used the facttlf}&t
B,
"~ N
(see Prob. 1). o\
Ezample 100. Maxwell’s equations in & homogeneous con-
ducting medium are N

H, =

";‘Ql

o) v.E - 0
{ K
() V. H= 0 .
\Q,/
(i) N xE < - L
¢ ot

: ¢ ‘1\ / A K BE)
1v . - B
(iv) \\ Vv xH ; (UE+41r y
Assumg@%ériodjc selution of the form

O E = Eq(z, y, )™
) H = His, g, o)™

Substituting into (iv), we obtain

or

() o
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This equation is the same as that which oceurs for “electrically
free space with a complex dielectric coefficient.

Problems

1. By letting By, = f(z — Vi), Ho = Flz — V), V = ¢/ xg,
show that T, = V'x/u E,.
2. Derive (287a).
y L%

. Lletr=25—Tt s= Vi, and show that =
et v ==z s =z and show ab o = V"at"

62
reduces to gg‘; = (}, Integrate this equation and shcw& 1?;‘hat- the

general solution of (288) is ¥ = flo — Vi, + Fizg. —‘{— T"r‘ where

Jand F are arbitrary functions, W
4. Prove that Maxwell’s equations for msulafors (g = () are
NY;
k 08 (D udH -
VxH=-— d VxE=-—-=-— 207
X ¢ ot a x‘ ¢ 9t (297)

5. Bhow that the solution of ( 297) can be expressed in terms
of a single veetor V, the Herta;arn *veetor, whore

62V av

E =V(V-V).f—2—, H="vx=

\ ¢ oi? e ot

"
@
and V safizfies VW\ K;: 6;:{
6. Prome that E ——V xﬂ, H=-V({V -W) -+ "";aa:; is &
¢
b

solutio\6f (297), provided that W sutisfies VW = K-L: aaj:f.

¢

7 Derlvc (204).
\' V8. Look up a proof of the laws of reflection and refraction.
9. By considering (i) and (iv) of Example 100, show that

p=np Ue-‘d‘lrcrﬂﬂt

81. Poynting’s Theorem. Our starting point is Maxwell’s
cquations. Dot Eq. (iii) of (284) with H and Eq. (iv) with E
and subtract, obtaining

c(H-VxE—E-VxH)—-:—-H-%?-—a{?r] E—-E- a? (298)
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Now from (218)
dw, 1 B 9"2 ow,, 1 JB

ot 4z 8t o 4

Let us write j = js + j, where jo represents the galvanic current
and j. = pv, the conduction current. Now

Ar  Mgoepesien Wi
E - -C _— E + OF = E . — s ——— e ~
= Py R o a N\

and {rom Sec. 75 it is easy to prove that E - je 18 Joulq’s\'ﬁm}er
lild \.
loss = E?— Moreover, H-VxE ~E. YV xH=V -,(E‘. x H), so

that we rewrite (298) as ) \\

dw,  Own Wy aQ)
Y = —dr(— 4 =) (2
¢V (E x H) 4#(‘% + az:.J\Q.’az t 5] 29

Integrating over a volume R and":a})plying the divergence
theorem, we obtain WV

030 s e[ om

where w iz the total eneiy dengsity,

We define 5 = (¢/d%)E x H as Poynting’s vector. FEquation
(300 states that j:-o\a’ct-ermine the time rate of energy loss in a
given volume K A\are may find the flux through the boundary
surface of theNfector s = {¢/47)E % H and add to this the rate
of generation™of heat within the volume. It is natural to
interpf?{\:l’\djfnting’s vector as the density of energy flow.

\\ Problems

/7N

AN

Y. Find ‘the value of E and H on the surface of an infinite
\ylindri cal wire carrying a current. Show that Poynting’s }rector
f‘epresent-s a flow of energy into the wire, and show that this flow
18 just enough to supply the energy which appears as heat.

2. Find the Poynling vector around a uniformly charged
SPhere placed in a uniform magnetic field.

8. If E of Sce. 80 is sinusoidal, E = Ho sin oz — Vi)k, find
the energy density after finding the magnetic wave H. . ‘

82. Lorentz’s Flectron Theory. For charges moving with
velocity v, j = #v, and Maxwell’s equations become
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(1 V-D =dxnp

(i) . V:B=24(

1 SB

(ii1) VxE = ot (301
| o (s A D)

(iv) VXH“c(pv-{_él?r Y

These equations are due to Lorentz. Trom (i) we ean {vr\it-e
B=Vx{A;+Vx) =V xA. Substitute this value {iiB into

. 1 JA ) ) O
(iii} and obtain V x E = — =V x — or its equivalent’
. . I [ilA . ,\N.‘S
1 9A AV
va(p 4 12) 00
p O
JA 1
Thus E -J,— — — is irrotational, so th@t}E + - %‘% = — V.

Let D = «E, B = zH, and bubsmtu‘re into {(iv). We¢ have

LN
»

1 411'"[':;‘ I ( 16%A 6@)}
2V % (VxA) = & al s g 94
“ x (Vx4) =~ r L\t EY
A

Z“Q\
and since V x (f:.{@}’ = —V?2A 4 V(V - A), we obtain
o\ 324 4
P27 i __Trfff'v_f_v,;, (302)
AO c? a2 e
where /¢ .
) w4 . a
:\\ ¢ =V.A+ "i:_‘o
AN A\ ¢* atf
“\Now
w 1 oA
41rp=V-D=K\7 Ve — ——
c dt
' v K (6‘9’/ K 6249)
= =k Ve — - - — . —
P eNar T ¢ o
so that
2
v, _ Kedle  dmp 1y (303)

et ap P ¢ ot
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Equations (302) and (803) would he very much simplified if
e T = i a

we could makey = V- A 4 o (’f = (. This is called the equa-

tion of gauge invariance. Lot us see if this is possible,

10A
NowE =V x Ay and E + ;Et_o = —Vq 50 that
Bo 10 o1 \
¢ a T T ew T f KoY
where A = 4, + Vx. Thus s ‘\'
N
| (aA aAn) 19 . L
— = _— % [ —— — _ K/
cNot ~ ) Toa T Ve
and \)
1 dy . .‘t\\"
PV B + qot}e'ﬁant
Lo _ dpo _ g
_ ¢ o t 8l
Now we desire \\g
0=v.a L0
(NS e? oot
ap| 8w 1 6’x]
=3 A, + V2 [ =
et VR T
or P\ _
:'\"' 2 . . ; :
~E ke A%y & Oy
O oy X, 0 304
ANy X at? V.AD ¢t ot (804)

..\
T\he tight-hand side of (304) is a known function of z, ¥, 2, .
\Mif"lg equation is called the inhomogeneous wave cquation, and
the cquation of gauge invariance is to hold, we must be able to
solve it. If wo can solve i, the Lorentz ¢quations will reduce
to four inhomogeneous wave equations and so will also be solv-
able, The'y are ' T ) .

ku %A

drup
VASLw T T e T
(305)
2 K}Lagﬂa 4‘8’
—_— - = —="p

e oo LK
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Problems

1. For the Lorentz transformations (see Prob. 11, Sec. 24,

gshow that
% 8% 1 a2 e % 62 it
Do = it ot g —ian —am Tt e Ll
ax‘ dz? e* oi2 ox? aF a3? o? .Q
Wae call O the D’ Alembertian. Y

2. Consider the four-dimensional vector (; = (A, 4 ,,\A: ~—¢),

1 9%
© =1, 2, 3, 4, the A; satisfying V2A = eyl xgha{e ¢ satisfies

1 82 Yoa
Vi = ___(,a, with H=V xA, and E = ; ,\——- — V.. Let
T c 0f

zl =g, :;;2 =¥, @’ =z, 2* = cf, and shegthat

0\—H o, —g)

7 (6‘0 6‘(3,-) . ﬁH‘é: 0] —H, -—E, \]
¥ = =", H, o _E
o\ E. EB, E 0 /

4
Iy , 1aE
Show that ax: S0 =1,23 4 yieldsV x H = — wnd
J=ll p o\ ; o
VE =0 Alsc;\how that
an,; aF «  OF,
-g,_i- 7+6‘xf:{=0’ @8 vy=1,234
1aH
y‘{al\dqv xE = —Egandv-H = 0,
\'\ ) 2% auP
4 7 e A
3. IfFy = Z Z FQB ppy— show that for the Lorents trans-
a=18=1

f{)rmations F'lz = -—Hﬁ-g = —_'—}IS——W_(V/C@.
[T — (72/e2ypt

Complete the ma-
trix F -
83. Retarded Potentials, Kirchhoff’s Solution of

62

Vi . L 0% _
¢ V2 o2 _%F(x: Wz i)
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To find the solution ¢(P, !) of the inhomogeneous wave equa-
tion at ¢ = 0, we surround the point P by a small sphere 3 of

\\ Fre. 71,

radius , and{g}»&' be the surface of a region R containing P (see
R « ; A
Fig. 71). ’\E“E’e apply Green’s formula to this reglon.

f{{&%‘;é@g—@vw) dr = fzf (Vo — ¢ V) - dé

A + [ [ wve—ove)-ds (306)
I“\“, S |
\, ¥ 1 0%
We choose for ¥ a solution of V& — Vian = 0. We know

Elat ¥ = f(r + V)/r is one such solution, where f is arbitrary.
quation (306) now becomes

1 \ , |
I3 - o5 [ e []
+ [ @
8
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Equation (307) is true for all values of £ so that we may inlegrate
(307) with respect to ¢ between limit-s_ t =1t and { = ¢ W
chtain

%f}{[ [yp?;—(p%ﬂidr—%ﬁ:’dcf}[fmdf
-;.Efdt(ff..._f_ff...} {308)
z 5 4 o

N
Nowon 2, ¢ = (1/e)f(e + V) and A
¢\
Y 1 , NS
Veds = —-1 =S [fet+ V) — o (c + V8] 45
|F=& € {“:g'
so that {308) reduces to ' m'\' o

1 fir 4+ Vi) dp Vi (r + Vi) NY
7 [ e TRy

f1

%4

“ae [ [] [ [ [ [ T,

ef' (e V) — fle +39 !
4ol ¥ - f<‘}g,:.?‘t>R].dd+ [ @m
L S 4 S s

al
NS

Let us now return e a consideration of f(r 4 ¥i). Since f
is arbitrary, let us {:h}sos,c f=0for |'r + Vt! > §, with the addi-
tional restrict-ioﬁ\\&ﬁét f_: For -+ Viyd(r + Vi) = 1, where 5 is
arbitrary fo;:.,ffh.e moment. Notice that f/ = 0 for [r <4 Tf’i: > b

Now let™e’choose £, > 0 and # negatively large, so that for
all valp\e?}o”f r In the region R, |r + Vt > 5. Hence

N [f(?" +VDae  VIG+ m)]
X - (P -

f2

AN T at Fy 41
.“\ -
“\sinee |r + Vi > 5 |r - V| > 5.
Moreover

SSF 1 a F
o ST VO di = [55 f 1 Vi) e + V)

2 &
_V—

for a fixed r. Now if 5 is chosen very small, the value of (310)
reduces to approximately

5 i) do (310)
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1 {F ] 1/F
f’ (;)m=0 /_53"(1’) dw = F (;)e=—w

Hence the loft-hand side of (309) reduces to

_ 4?” f Rf f Gf)t:w & (311)

Now ecousidering the right-hand side of (309), we see that N\

i ff [M Ve + (’o*_f(_em R] . dé z\<ﬁ\
- 13 [ ;\';

=0

o ~\
since ds iz of the order €, and f, 7/, ¢, Ve are bounded for a fixed 5.

We also have that R4S
+ X )
: O
Trem [ @f(i“f“yt) =\‘_l
R L fz f e dS\\ 7o) (312)
N\,

. I \¥;

since { [ 43 = 47¢?, and for small\y,

i TR
= LAY

I/;.'ZE ‘__-:!f(ﬁ ‘f" Vt) d(f‘)i_:',::'p'zj _ -/.56 qﬂf(ﬂ’-'} d:c == @(P)

NS

Tinglly,

S
[JJa| e, (2 20)5,)
5 N §

‘__':,,’f'[ ﬁ:z 2t [ﬁ(?"t—m Vo - gw-:’ » dé
&

D
R %\} s aﬁf_f’(w-d.s) — { / [ a {f(?"_ﬂ:_@ Yo
> ' ' 1,9
\\:"‘ +f—{w}-ds+ /;f [ I AT de) (313)

o0 integrating by parts and noticing that 7] = 0. Finally the
tight-hand side of (313) becomes equivalent to

V(e -

= —5/V

i 1 ¢
vo+—

Vr) - dd
t=—r;F ¥ rV o¢

(314)

t=—r/¥
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Combining (311), (312), and (314), we obtain

¢(P):f£fﬁ' dr

Pl —r/V
1 Ve 1, 1o ) 5
_ersf (T oV s G1)

P

e ) &
Now let S recede to infinity and assume that o, Ve, —ai;: when

evaluated at ¢ = —r/V on the surface S, have the valife)dero
until a definite time 7. For large r, { = —+/V is hegfive and
s0 is always less than 7. Tlence the surface elemerit vanishes,
and _ . ~‘ :
F A\
e(F) = — AS 316)
f{f Plim /1 (
. )
The solutions to (305) are thus seen tf De
&
W
AR,y = [ [ [0 &
= AT [t — /W) -
W o) (317)
ol 1) = P 2 dr
’ i fﬂ Tle—tr/¥)
where V' = ¢/ Q '
Finally, ¢ &\J
Y \\ B=vxA
1 0A ' (318)
4 E=——-—
N\ c ot €
A\

&

The ’gniysical interpretation of these results is @imple. The
valueg the magnetic and electrie intensities at any particular
POMINP at any instant ; are, in general, determined not by the
msﬁa}e of the rest of the field (p, ¥) at that particular instant, but
by its previous history. The effects at P, due to clerqents at a
distance r from P, depend on the state of the clement at a previ-
ous time ¢ — (r/V). This is just the difference in time required
for the waves to travel from the element to P with the veloeity
V=c/ \/;;, hence the name retarded potential. Had we con-
sidered the function f(r — V1), we should have obtained a solu-
tion depending on the advanced potentials. Physieally thig is
impossible, since future events cannot affect past events!
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Problem

1. A short length of wire carries an alternating current,
j=pv =T (sin v}k, —1/2 £ z 5 /2.
(a) At distances far removed from the wire, show that

of
A:-:T—smw(t—f)k
or

2 ) {\
and that in spherical coordinates \;\A
Il r QO
A, = Zsinw{t— <) cos g A\
er ¢ & 3
I, (
A9=‘—‘—Ib]nw(£ )sm \&l
cr ¢ \
A, =0 AV
o’{,
(b) Show that H, = H, = 0, and thag\
(As"
Il il | :
H,,,z-—falnﬁ[fc(mw(t 23 —J——sinw(i—f)}
er ¢ Q:X(? r c

(¢} Find ¢ from the qu&t‘lm of gauge invariance, and then
By Be, B, from E + - A\— —Veo.

Q(’<\'

¥ 4 "“"
2O
9
25
'w\v .
W
7
=™



CHAPTER 6
MECHANICS

84. Kinematics of a Particle. Wae shall describe the mghion
of a particle relative to a cartesian coordinate systemy. NThe
motion of any particle is known when r = z()i + y( 20k
is known, where ¢ i the time. We have scen that, fhe veioeity
and aceeleration, relative to this frame of referenqe‘;f‘x;-'ﬂi be given

by

) M‘\i.

de,  dy. dz
v_dal+dtj+d.c\k‘

dx du ’\a‘?;
R A

The velovity may also be giveftby v = #t, where v is the speed
and t is the unit tangent yector to the eurve r = r{f). Differ-

entiating, we obtain N\
AN
d4e ) dv dtds du
a =5 n;____t - 2 319
T @ttt Tyttt (319

. A/ _ .
by ma-klgggsc of (95). Analyzing (319), we see that the accelera-
tion oftlic particle can be resolved into two components! a
tangéntial acceleration of magnitude i—j, and a normal accelera-
w\:';b;i'cin of magnitude v% = v2/p. This Jatter acceleration is called
\ ) centripetal acceleration and is due to the fact that the velocity
veetor is changing direction, and so we expect the curvature fo
play a role here.

For a particle moving in a plane, we have seen in Sec. 17,

Example 18, that the acceleration may be given by

_[dr d9)2] ld(zda)
a_[dw r(dt R+ra\a)?

184
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Ezample 101, Let us assume that a particle moves in g plane
and that itz accelcration is only radial. In this cale we must

1df , de
have—--"{- 7 )= 0, and inte-

7ot di ¥

5

. . 00
grafing, £+* 7 A = constant.
d

From the caleulus we know _
that the sectoral area is given AA
by dA4 = §r2d6 (sce Fig, 73). O\

d_’i {
Thug Tl constant, so that r « W

equal arcas arve swept out in %

equal intervals of time. P\ N
Ezumple 102, For a particle Ruy. 72.

moving around a cirele » = b AN

. { & T
with constant angular speed w, = d—f’\ ve have prile 0 and

Nt/

d 3
7 {(rwo) = 0, so that a = -bw,??B%

Example 103. To find t-he;’;fﬁﬁgent-ial and normal eormaponents
of the acceleration if the acldcity and acceleration are known.

v.\%}\vt, a=at+an

and
O a-v
'QQ';:“V=L‘G¢ s0 that ;= Y
Also 2,
:"\‘. .
AN\ axv=ryaenxt= —vab
and M
AN la x ¥|
4 ; aﬂ’ _—
3 g
Problems

1. A particle moves in & plane with no radial acceleration and
constant angular speed wp. - Show that r = Aen* + Bed.
2. A particle moves according to the law

r=costi+ sinij+ £k

Vind the tangential and normal components of the acceleration.
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3. A particle deseribes the cirele » = ¢ cos @ with constant
speed. Show that the acceleration is constant in magnitude and
directed toward the center of the circle,

4. A particle P moves in & plane with constant abguiar speed
w about O. If the rate of increase of its aceeleration is parallel

dir
to OP, prove that i Frad,

5. If the tangential and normal components of the aceeloratio
of a particle moving in u plane are constant, show that “the
particle deseribes a spiral. L\

8b. Motion about a Fixed Axis, In Sec. 10, Ixamplesh2 e
saw that the velocity is given byv=0xr Differcatiating, we
obtain "

oL ¥ ;

a .(.E.r.. + d_{l) r ,M.\\.
= th. dt x ;
.\\J 3
a=mxv+ax{‘;. {320}

NN

. L Ndo :
where o is the angular acceleration T Since v = o xr, we -

3 have also
W =6 x{wxr+axr
={0 e — w'r +- e xr

If we take the origin on the
line of w in the plane of the
motion, then o is perpendicular
torore.r =0, so that

4= —wr + axr

o X I is the tangential aceelera-
O TFia. 73. tion, and ® x (@ x r} iz the
} ceniripetal acceleration,
If we assume that a particle P is rotatin g about two intersecting
lines simultaneously, with angular velocitics o1, o, (Fig. 73), we
ean choose our origin at {he point of intersection so that

V]_:(:)'[Xl‘, Ve = s XTI
and the total velocity ig

V="t %= (0 +w) xr
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A particle on a spinning top that ig also Precessing experiences
such motion.

86. Relative Motion. Let 4 and B be two puarticles traversing
curves I'y and Ty (Fig. 74). 1y and r; are the vectors from a point
0 to 4 and B, respectively.

r=r+n (321)

dr | : . . _
Defindtion: o= the relative velocity of & with respect to A,
written V.(B). R OV
D

N
« N/

N

§ e
Fra b8
X N

Differentiating (321), we hﬁf}ew

Q
.{M&z _ d_r + dﬂ
SNTat T a
or O
O VolB) = VuB) + Vold) (322)

y "\: /
More go\r%r’ﬁ’lly, we have

Vo(APS V() + Vi(Ay) + Va(d) + - -+ + Var(doms)

) + VoA

}1‘5 important to note that Va(B) = —Va(4).
Ezample 104. A man walks eastward at 3 miles per hour, and

the wind appears to come from the north. He then decreases

his speed to 1 mile per hour and notices that the wind comes

from the northwest (Iig. 75). What is the veloeity of the wind?
We have

Ve(W) = V(W) + Vo(M}  Glground)
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In the first case _
V(W) = —kj, Ve{d) = 3i
g0 that
V(W) = —kj + 31
In the second case,

Vil W) = R(i ~ ), - Vel(M) =i
go that
VelW) =kl — D +i=(h+ )i — 2],
and O
3=h+1, —k = —5, VelW) = 3] — 2{’«\.
The speed of the wind is V13 miles per hour, anql itd divection

makes an angle of tan! § with the south line. N

8 &V .
qu_.\?ﬁ. Fra, 76.

Emmg;le;l\[ﬁ& To find the relative motion of two particles
moving Sgith the samo speed v, one of which deseribes a circle of
radilis'e while the other moves along the diamcter (Tig. 76). We

hage
. *M\,“ ' P=gcozei in 4] @:
Q + a gin 63, adt ¥

Q = {a — )i
This assumes that both particles started together.

@_@_.(__ 'gd_g ) ) -g@'
dr g & 8in dt+v i+ acos diJ

VolP) = o(l — gin 8)i 4 v ecos 6]
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The relative speed is |

[Vo(73| = [12(1 — sin 6)? + v cos? oF = 2w(1 — sin o)t
Maximum g'VQ(P)[ oceurs at & = 37/2, minimum at § = =/2.

Problems LI\

1. A mun traveling east at 8 miles per hour finds that thawind
seems to blow from the north. On doubling his speed, heinds
that it appears to come from the northeast. Find t,hé.\velocity
of the wind. N

2. 4, B, (! are on & straight line, B midway heffeen A and C.
It then takes 4 4 minutes to catch €, and B e?ﬂ;}hes ¢ in 6 min-
utes. How long does it take A4 to catch uplto B?

3. An girplanc has a true course wedtand an air speed of
1200 miles per hour. The wind speednis 50 miles per hour from
130°.  Find the heading and grouddydpeed of the plane.

87. Diynamics of a Particle. +Up to the present, nothing has
been said of the forces that produce or cause the motion of a
particle.  xperiment shqwg that for a particle to acquire an
acecleration relative tq;cel'“ﬁain types of reference frames, there
must he 5 force ac{t'ng on the particle. The types of forees
encounicred mostiffeuently are (1) mechanical (push, pull), (2)
gravitaiional, {3)'\%1ectrical, {(4) magnetie, (5} electromagnetie.
We shall be théﬂy concerned with forees of the types (1) and
(2). For the'prosent we shall assume Newton’s laws of motion
hold forméfion relative to the earth,  Alterward we shall modify
this. Qﬁ'ﬁﬁ-‘ttm’s laws are:

(.a’j: A particle free from the action of forees will remain fixed

- onwill continue to move in a straight line with constant speed.
. (®) Ioree is proportional to time rate of change of momentum,

that is, f = di (mv). In general, m = constant, 50 that

= — = Mma
f mdt

The factor m is found by experiment to be an tnvariant for a given
particle and is called the mass of the particle. In the theory of
relativity, m is not & constant. mv is called the mementum. )
() If A exerts a force on B, then B exerts an equal and opposite
force on A. This is the law of action and reaction: fas = —fpan
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By a particle we mean & finite mass occupying a peint in our
Euclidean space. This is a purely mathematieal coneept, and
physically we mean s mass oceupying negligible volume as com-
pared to the distance between masses. For example, the earth
and sun may be thought of as particles in comparison io their
distance apart, to a first approximation.

88, Equations of Motion for a Particle. Newton’s sccond Iaw

av N\
may be written f = m o s Wo postulate that the forces

. . . 2N
acting on & particle behave as vectors. This 13 an exp{:r‘imental

fact. Henceif f, f., . . . , fn act on m, its acceleration is given
by . “(‘.."'
1 1 S
a= @bt 4ty = QL
i TN n
\ W i=1
AN

: d’ { & . _
We may also write f = m oL whered™ 8 the position vector from
the origin of our coordinate systom {6 the particle. If the particle

. . . A\ . dr
I8 at rest or is moving with e8fistant velocity, then i 0, and

sof = 0, and conversely, Hence a necessary and suflicient con-
dition that a particlo &8 In static equilibrium is that the vector
sum of the forces aating on it be zero.

A standard bodiis taken as the unit mass (pound mass). A
poundal is the fofce required to accelerate a one-pound mass one
foot per seedud per sccond. The mass of any other body can be
compaltgg;}ﬁth the unit mass by comparing the weights (foree of

Q.. m, &ravity at mean sca level) of the two
&

objeels. This agsumes the equivalence
of gravitational mass and inertial mass.

Example 106. Newton’s law of gravi-
tation for two particles is that every
pair of particles in the universe exerts
& mutual afiraction with a foree directed
along the line joining the particles, the
magnitude of the force being inversely
proportional to the square of the distance between them
and  direcily proportional to the product of their masses.
fi2 = (Fmome/rR (sce Fig. 77). G'isa universal constant. T{:'L

Fia. 77
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the masz of the sun be M and that of the earth be m. We

shall asstume that the sun is fixed at the origin of a given coordi-

nate system (Fig. 78). The force aci-

ing on the earth duc to the sun is
f = —({Gmd /r¥)r

From the sceond law

Gmﬂ{ = dire  dv
T ar T M
50 that
dv qM
i o r (323)
Now
- d dv
T
and hence \ \
d e
a " * ) =‘(”—) -0
This implies ?;.;&'
£.X 7 = h = constant vector
or N\
O & (324)
rx—=h
T xg

L )
N/

i & A
Since |r x drj\f\ Twice sectoral area, we have 2 i Il, or equal

artens a.’u\-{i%ﬁ-‘:épt out in equal ntervals of time. 'IC;EJS is Kepler’s
ﬁrs1i la?v of planetary motion. Morcover, I - [I x %] =r-h=0,
"Sq’a{at I remains perpendicular to the fixed vector h, and the
Nufotion is planar. Now
dv GMr M

“&xhz— pe xh=—-—r?rx(rxv)

from (324), and;% (v xh) = dg\g x h, so that

_%(v x h) = —(%ifrx(rxv) (325)
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Now r = rR, where R is a unit vector. Hence
dr dR  dr
v = i r T + n R
80 that (325) becomes
d oM ( : dR)
dt(VXh)-_ T3rxrx?dt
= —~GMR x% (R X C—ER—)
dt
- —our | (= )
tif
__dR 7
=G — ¢
dt \:"‘§\

since R i3 a unit vector,

Integrating (326), we obtain ’::\\3
vxh = Gﬂh +k
and QO
I+ (v xh) =r-(G;ﬁfR+k)
xv) h=Q¥r +r -k

R =Wy +1-k
hﬁ{——- GMr 4 vk cos (R, k)
Thus ,\\
N R /GM ~
1+ (k/GM) cos (1, k)

A
L >
» N/

&

{Sme, B8

O

N ¢

IR )
R_h-Rﬁ—g%%

s/
Al
N

(327)

(328)

We choose tlié}\ 'éirect-ion of the constant vector k =g the polar

axis, so th\a?,\

(329)

N\
Q b meM
i..\‘;z' 1+ (2/GM) cos @
~O
\’fhls 13 the polar equation of conic section. For the plancls

these conic sections are closad curves, 80 that we

obtain Kepler's

second law, which states that the orbits of the planets are cllipses

with the sun at one of the foei.
Let us now write the ellipge in the form

— £p
1+ ecosg

whe = e
ere e G

ha

PP o= =

hﬁ
k
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The curve crosses the polar axisat g = 0, 8 = 7 30 that the len oth
of the major axis is

ep 2p 2h2

2 = . +

Ite 1—¢ 1-¢ GUI—o

For an ellipan, 8 = g2 — ¢2 = g — e*a’, orb = (1 ~ ¢¥'. The

areq of the ellipse is A = zab = ra?(1 — )}, and since %—: =h,

the period for one complete revolution is A
N\
P24 oot C
T T T O
Thus P
T2 411'2 W
A constant, for all Iﬁ}ikt}f}ts (330)

7
W

N\ '
This iz Kepler's third law, which >sbates that the squares
of the porinds of revolution of the plgpéts are proportional to the
cubes of the mean distances from_the sun,

<

Prb:ﬁi'ems _
1. A particie of mags ?:{bis attraeted toward the origin with the
force f = — (Z2m /ro)rs {11t starts from the point (e, 0) with the

speed vy = £,2%? perpehdicular to the z axis, show that the path
18 given by » = a (@95 0. .

2. Abead of fudss m slides along a smooth rod whieh is rotating
with ccmstagi{langular speed w, the rod always lying in a hori-
zontal plyme.” Find the reaction between bead and rod.

3. x"'u{j;wtiele of mass m is attracted toward the origin with a
f”l'ﬁ@"*'?' {mi?/#9)R,  Tf it starts from the point (a, 0) with velocity

> E/a berpendicular to the x axis, show that the equation of
the'path ig

2 _ yh
{a*, k?) 8]

T = a 8ec
aiy

4. In a uniform gravitational field (earth), a 16-pound shot
leaves tho putter's fingers 7 feet from the ground. At wh’a,t angfe
should the shot leave to attain a maximum horizontal distance?
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5. Assume a comet starts from infinity at rest and i attracted
toward the sun. Lot ro be its least distance to the sun, Show
that the motion of the comet is given by r = 2r,/(1 + cog ).

83. System of Particles. Let us consider a systein consisting
of a finite number of particles moving under the action of various
forces. A given particle will be under the influence of two types
of forces: (1) internal forces, that is, forces due to the interaction
of the particle with the other partieles of the system, and (2) all
other forces acting on the particle, said forees being'dalled
external forees. )\

If 1; is the position veetor to the particle of mass #ehHhen we
shall designate £ as the sum of the external foreeswadting on the
Jth particle, and £ as the sum of the int-erna.Lﬁ)r"'ées acting on
this particle. Newton’s second luw l)ecomesj’QKﬂlis particle

2 )
5O 1 £0 — g, T (331)
Unfortunately, we do not know, in ﬁ&\neral, £;, 80 that we shall
not try to find the motion of each.particle but shall look rather
for the motion of the syst-en}.'e):s a whole. Bince Eq. (331) is
true for each j, we can sumaip¥ for all the particles. This yields

n e" N 7+ . n d«zr_f
Q2ENE Y50 = ¥ om
S 5 i=t

N\
From Newton’s aﬁrd law we know that for every internal force

e N
there is af\equal and opposite reaction, so that 2 £;0 = 0.
i=1

x'\.v =
Thig Ieayes
.\\ - : - - dEr_
o . £ = 1y —— (332}
) i Z1 i Z] af?

RS
\ / We now define g new vector, called the centor-of-mass vector,
by the equation '

mfrJ 1 i)
ro=f =I5 % E mt; (333)
Y m 7=t
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The end point of r, is called the center of mass of the system,
It is a geomeiric property and depends only on the position of
the particles.  Differentiating {333) twice with respect to time,

we ob{apin

d2 . " .
El’f—-r— = Z mj@

diz o de
80 that (332) becomey A
. d21‘,, O\
f= Y59 = - 659
i=1 O

\
-
N

A

Equation (334) states that the center of mass of fhe system
accelerates as if the total mass wore cnncentralﬁﬁ?‘ there and
all the uxiernal forces acted at that point. )

,,{FIG? 74,

Ezample 107, If oup iﬁr\gtem is composed of two particles in

free space and if Lhey\}e originally at rest, then the center of
£ D 2

T,

mass will alwaysuldaain ot rest, since f = 0 so that gz = O and

I, = consmnp{;{}isﬁes the equation of motion and the initial eon-
. dr AN
dition dt—\c\ 0. For the earth and sun wo may choose the center

of misd os the origin of our coordinate system (Fig. 79). The
e‘l\k‘tﬁions of motion for carth and sun are :

dry GmMR _tf_rg _ .G'mM"R
E (-7 (m— 1)

Since r, ~ 0, we have mr, + Mr; = 0, and

dr, —GM n

dir 1+ (m/ M)
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This shows that m is attracted toward the center of mass by an
inverse-squarc force. The results of Example 106 hold by replac-
ing M by M1 + (m/3M)]2

Problems

1. SBhow that the center of mass is independent of the origin
of our ¢cordinate system.

2. Particles of masses 1, 2,3,4,5,6,7, 8 are ploced atuthe
corners of a unit cube.  Find the center of mass, \

3. Find the center of mass of a uniform hemisphere,, ()

4. Find the force of attraction of a hemisphere amd ahother
hemisphere, the two hemispheres forming a full sp,ij'gr\éi:

90. Momentum and Angular Momentum. Thevmbmentum of
a partiele of mass m and velocity v is deﬁncd.,gls‘M = 7. The

total momentum of & system of particles iigivcn by M = Z R
AN =

We have at oneé that \ “
dM S (%V‘J' N {‘
—_— = s = ) fld = {335
dt i= ??ii};at _-,'i"' . f (339)

We emphasize again thati the mags of cach pariicle s assumed
constant throughout, #fe motion.
The vector quaniity r x mv is defined as the angnlar momen-
tum, or mement og\mom(intum, of the particle about the origin €2,
~ £ g‘hc total angular momenium is given
¥

H = Z T X MV (33G)
A
91. Torque, or Force Moment. Let
f be a force acting in a given dirvection
Fie. 80, and let r be sny vector from the origin
whose end point lies on the linc of
action of the foree (see Fig. 80). The vector quantity r xf

is defined as the force moment, or torque, of f about 0. For a
system of forees,

L= Y1 xs (337)

i=1
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We immeadiately ask if the torque is different if we ?a differ-
is in the

ent vecter 1 te the line of aection of f. The answ
negative, for '
(r:—rxf=0

gince ry — 1 is parallel to f. Hencer, xf =1 x 1,

What of ihe torque due to two
equal and opposite forces both
acting aleng the same line? Tt
is zero, for

I xf+rx{—f)
=nx{f—-fi=0

Two equsl and opposite forces

~ with different lines of action
constitute a couple (see Fig. 81).
Let r; be a vector to f and 1, a
vector to —f. The torque due
to this eouple is O

L =1 x&5$'r x (—1)
= (I 1) xf

The couple depends onig on f and on any vector from the line of
action of —f to the ]{he’ of action of f.

N\

Problems

L. Show thaf4f the resultant of a system of forces is zero, the
total torgj{éﬁﬂaout one point is the same as that about any other
point, NN

2, ’sh\ow that the torques about two different points are egual,
pravided that the resultant of the forces is parallel to the vector

\”j?iﬁing the two origins.

3. Bhow that any set of forces acting on a body can be
replaced by a single force, acting ab an arbitrary point, plus &
suitable couple. Prove this first for a single force.

4. Prove that the torque due to internal forces vanishes.

92. A Theorem Relating Angular Momentum with Torque.
We are now in a position to prove that the time rate of change
of angular momentum is equal to the sum of the external torques
for a system of particles. )



198 VECTOR AND TENSOR ANALYSIS [8zc. 93

- Since
" "
dr;
H=2rjxm;v,-=zrjxm~—’
= et dt

we have on differentiating

dH 3 dr; o dr; dr;
= _j;r: X My dr +Jg:1 7l mgéz‘ 7\

N ’t\a\.

= ) 5 x @O 4 £0) o
J‘=1 L N/
k(3 (“.ﬂ
df 74 4
= Ynxteo 1 (2 (338)
dt ,-Zl ’ A\ :
\\,

93. Moment of Momentum (Continted). Tt is occasionally
more useful to chooge gz moving point @ as the origin of our

N Fic. 82,
cgglithnate system. Let O be a fixed point and @ any point in
w\i”p.a'ce. We define
C dr;
Hp = T — I, = 339
@ Z ( H Q) X 7y i | ( )

F=1

The .superscript @ stands for absolute momentum, that is, the
velocity of 7, i8 taken relative to 0, whereas the subscript ¢
stan_ds for the fact that the lever arm is measured from Q) to the
barticle m; (Fig, 82), Differentiating (339), we obtain
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dH¢* 3 (% _ d_rE) dr; 3 a%;
7 _521 ey R L +21 (t; — 1g) Xmi

dl'g - dr. P . ‘ : .

n

&EoH a3
Now Mt = Z myT;, 80 that M;Er = Z %{fg_?’ and z f0 = (}"\
: §=1 =1 \

i=1
E 1; x £, = 0 from Sec. 91, s0 that K ‘\
i=1 WV
JH o dte dE < N
= —M— x— i £
dt a *a ;-Zl (x r‘?)“’f o
or \Y
dHQ" . drg, “gii {
= Lo — M =" 340
dt ¢ dy" dt . (340

N\
N/

We can simplify (340) under thm’fﬁ:onditians:

<

dry oS
1. Q at rest, so that ?f =20

& i
2. Center of mass éﬁ}\'est, i 0
3. Velocity of"Q 13 parallel to velocity of center of mass,
drg dr. A&7
d X 0\
In all t fé}z‘éases
P
™ dHQ“ 41
NN ; = Lol (341)
~O :

In particular, if Lo®@ = 0, then Hy® = constant, and this is the
law of conservation of angular momentum,

94, Moment of Relative Momentum about . In Sec. 93 we
assumed that the absolute velocity of cach particle was known.
It is often more convenient to caleulate the velocity of each

dl'}' drq

particle relative to . This is i We now define rela-
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tive moment of momentum about ) as

Hy =:_ZI 6 = 1) xm; = LR (342)
Differentiating,

dHy _ 3 d'r;  dry O\
d 21 (@ = x0) x my (da? T

Q
u \\

) dr, o\
) & =10 x (5 + ) + @ XA ™~
i=1 1

=3
'4
&
»
/

We see that QS

dHQ
(s) —
= + o0 @ xz\\ma(r: 1o (343)

Under what ecnditions dgggk—ae— = L¢'9?7  We ncoed

L
N
.’N

3
™}

dzr A
‘@F X mf(rf - rQ) =0
or

Z’s d?r
T Mmoo g

Now (84) halds if
I{\z‘, = Iy or @iz at tht_a center of mags,

W L o
R\ 342, @ moves with constant velocity, —&f =0,

e ,,z

Noos

— I is paralle] tg =29 & Te,

Problems

d%ry dr
1. Show that 2 m{t; — 1) x:i?— = M(r, - ro) x dt’Q
8 lies in g plane, and each particle
e from a point O in this plane, each

j=1
2. A system of particle
remaing at a fixed distanc
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particle rotating about O with angular velocity w.  Show that

H; = I, where [ = Z myy?, and show that L, = 7 %

i=1
3. A hoop rolls down an inelined plane. What point can be
taken as € s0 that the equation of motion (343) would be
simplified?
95. Kinetic Energy. We define the kinetic energy of a particle
of mass w and velocity vas T = dmv . v. £\
. C M W)
For a system of particles, “

:{’«1 ”2="1 (dr,) 4
r= ) 5mm 22 ~) (345)

=1i

Now let 1, be the vector to the center of  Q
mass ¢ (Fig. 83). It is obvious thj(; /Y  Fe. 83.

=1+ @ 2%

" 80 that o\ I
% le? }td (1':' — I}

£ (8) s oo ffus]
Hence \ \\”

1
T.—égf( dl‘c Em"dt 1)

’. § . z L2 e - r;):lz (346)
:"\ ; =

\Fow Mr, = Z ML = (E m,) 1., so that Z mfdt (t — 1} =0,
and (346) reduces to
L e 1 [d ] 347
T = %l — 1) (347)
2 (dz) + J.Z 4

This proves that the kinetic energy of a system of particles i
equal to the kinetic energy of a particle having the total mass
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of the system and moving with the center of mass, plus the
kinetic energy of the particles in their motion relative to the
center of mass,

96. Work. If a particle moves along a curve T with velocity v
under the action of & force f, we define the work done by this
force as '

W:ﬁ(f-v)dzzj;f-gdzz fea o
.\\\’

a )
= [1-Zds = [ f.t4s ANV (348)
r 3 N\

If £ acts at right angles to the path, no Work,isf done.
If the field is conservative, f = — vy, t-hgﬁv‘ork done in taking
the particle from a point 4 to g point\BNe independent of the

path (see Scc. 52). PN
Now \s

dv, Q..
'E:i = LY 1,0

~
<N

dV;rv \ .
MVis S= S 50 v L £0 .y

dt

and integrating and @hmmmg over all particles,

n ‘i:} ) n

f day; t o
=1 ’..,'.“.’ i=1 i=1

A\

~

ar £ )
N
."\.§¢ n
N Y I — v = e 4 o (349)
\ i=1

This is the principle of work and energy. The change in the
kinetic energy of g system of particles is equal to the total work
done by both the external and internal forces,

If the particles always remain at a constant distance apart,
(ri — )2 = constant, the internal forces do no work. Lef 11
and 13 be the position vectors of two particles whosge distance
apart remains constant, and let f and —f bo the internal forces
of one particle on the other and conversely. Now

(= 1)« (1, — I;) = constant
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so that

(T = 1) | — — ==

drl dr 2) -0
dt  dt/) (350)

Also
Wo = [fovidt+ [ —fvdi
= {f« (v, — v dt

Q"
Since f iz parallel o 1y — ry we have f = a(r; — 15) and |, A\
{
f. (Vi — v2) = a’,(I’l —_ l'g) . (V]_ - Vz) = 0 s\ '
from (350). Thus W& = 0,
AV
Problems N
1. A system of pariicles has an angularnglocity w. Show that
L) 2%
21 — E '.g[‘m‘.[(ﬂ »® r3.|2. “.:\ ’

A

i=1 )
2. If e of Prob. 1 has a constant direction, show that T = $lw?,

where I = E m;d?, d; beingithe shortest distance from m; to
=1

line of w.

1]
E Mt

i=1

3. Bhowthat ?—7 ,=§=:“m\' L, by using, the fact that T =
& .

and that v; = gy 1.

4. Show tll\b;f “the kinetic energy of a system of rotating par-
tieles is corfgtant if the system is subjected to no torques. What
if L i5 perpéndicular to w?

5. %pz’mrticle falls from infinity to the earth. Show that it
Strik;zs the earth with a speed of approximately 7.0 miles per

. socond,  Use the principle of work and energy.

\ »¥'97. Rigid Bodies. By a rigid body we mean a systen:t of
particles such that ihe relative distances between pairs of points
remain constant during the discussion of our problem. Actually
no such systems exist, but for practical purposes there do exist
such rigid bodies, at least to a first approximation. MOT&OVGT;
the rigid body may not consist of a finite number of particles, but
rather will have a continuous distribution, at least to the unaided
eye. We postulate thut we can subdivide the body into a great
many small parts so that we can apply our laws of motion for
Particles to this system, this postulate implying that we can use
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the following form:

Our laws of motion as derived above take

T = [Rff $o02 dr, p = density

L o

f}[fff? dr

dBR
di

ez

I
it S O%est
e W

%
ool

=fffpr X Vdr \\ 3

E .\
= L = f}!/\\rxffsn dr

where £ ig the external force per }uﬁi;svolume,
<.04"98. Kinematics of g Rigid Body™"JLet O be g poini of a rigid

AN
w\:A-’
4

Fia, 84,

B

Y (P] = VP:

body’for which O happens to be fixed.
1632 easy to prove that the velocity
~&f any other point P of the hody must
be perpendicular to the line joining O
to P, for if r is the position vector
from O to P, we have r.r = eon-
stant throughout the motion so that
dr :

o= =0. QED.

We next prove that if two points
of a rigid body are fixed, then all
other particles of the body are rotat-
ing around the line joining these two
points. Let 4 and B be the fixed
points and P any other point of the

body. From above we have

s0 that P
Moreover,
to the line

sitce the bod
AB remaing

v(P)-£P=v(P)-I;P=O

I8 always moving perpendicular to the plane ABP.
¥ 18 rigid, the shortest distance from P

constagt, so that P moves in a circle
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that their line of intersection, I, passcs through 0. Now con-
sider any point €' on this line. We have v¢ - 1o = 0. Moreover,
(Te — ta) - (tc — r4) = constant, so that

(tTe = T4} r (Ve —va) =0

and (re — r4) - ve = 0, since v, is perpendicular to (re — r,).

Similarly (r¢ — 1)+ ve = 0. Henee the projections of vo{ih

three directions which are nonplanar are zero. This meaps, that
{

Fra. 86,

Vo = (};\:s\a“that we have two fixed points at this particular
instant." Hence from the previous paragraph the motion is that
ofarotation about the line . Ifo is the angular-velocity vector,
'“’t}h»eh Vi = @ x Ij, where 1y is the vector from O to the jth particle.
N\ Now let us consider the most general type of motion of a rigid
body. Tet O-fy-¢ represent a fixed coordinate system in space,
and leﬁ O-2-y-z Tepresent a coordinate system fixed in the rigid
body (see Fig. 86), Let o; and 1; represent the vectors from ¢/
and O to the jth particle, and let & be the vector from O’ to O.
We have g; = a + 1, and differentiating,
_@ da dr‘,‘

F7I
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dr; . - .
Now -d‘ represents the velocity of P; relative to 0. This means
t !

0 is fixed as far as P; is concerned, and from above we krow that

d_r =w %I Thus

dt
do; da
Vi = “d—; =a—+wxr,- (352)¢°
that is, tho most general type of motion of a rigid body is tbat g;\)f
d \ l
a translation o plus a rotation o x 1, m'}&

Wo next ask the following question: If we cha gu our origin
from O to, say, 0" does @ change? (Fig. 87: N The answer is
“No”! Tet b be the vector N\ .
from ¢’ t5 7. Then N P

din:
V:=?? d-i-t-nxr; N\
Bu v‘{":s“
\} (_fE _ @ L (b _ a“f:;'
dr @x
and \

h‘ OI
= (a~ bk*( Fia. 87.

4,}» x(b—a)+ox(@a—b)+wmxy (353)

4O

Subtlactxqg A(352) from (353), we obtain
O s e x(b =) 4 o 0 x5 =0

or ¢\

-4

N o e-e)xb-a-5) = —(e-e) x5 =0

We can certainly choose an 1,7/ » 0 and not parallel to the vector
@ = oy at any particular instant. Hence 0 = o

Thug

Problems

L. Show that if r; and r; are two position vectorsi fI'OI.’Il the
origin of the moving system of coordinates to two points in the
dn

rigid body, then 1 - %? T T o
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2. A plane body is moving in its own planc. Find the point
in the body which is instantaneously at rest.
8. Show that the most gen-
eral motion of a rigid body is
S a transiation plus a rotation
about a line parallel to the
¢ 0 translation
ransiation. .
99. Relative Time Rite of
Change of Vectors. b(\t S be
: 7 any veclor measyréd “in  the
0 moving system of‘ ‘toordinates
(Fig. 88). &)

Fre, 88. 8 = Si LP:S,J 4 8k (354)

2

To find out how 8 changes with time a3 \n(,asul ed by an chserver
at O, we differentiate (354), \‘

dS  ds,. ds, dS ik
— 3 —— {3h
@ -ttty + S + Say (355)

We do not keep i, §, k ﬁxed si‘nce i, j, k suffer motions rolative to

i
', But we do knaw~that 7 Is the velocity of a point one unit

\

. <O, i a4 ;
along the ayme\re[atwe to 0. Hence = oxh o =ex
X k > Hence (355) beco

dS dS
'\dﬂ +_ +—'k+mx(sxl+syj+szk)
ai’r}’d
s DS
i —I— 0w xS (3566)

Ds
where i represents the time rate of change of 8 relative to the

. a8,
moving frame, for S, is measured in the moving frame and so —- 7

is the time rate of change of 8, as measured by an observer in the
moving frame,
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Intuitively, we expected the result of (3586), for not only does S
change relative to O, but to this change we must add the change
in § beeause of the rotating frame. The reader might well ask,
What of the motion of O itself? Will not this motion have to be
considercd?  The answer is “No,” for s translation of O only
pulls 8 along, that is, § does not change length or direction if 0
is transiated. It is the motion of S relative to the frame O-z-y-2

and the rotation about O that produce changes in 8.
Problems )
'\
d D \/
1. Show that i = ?? (‘,'}‘:
d3 DS ¢

2. For a pure translation show that i d—t‘\\

di \
3. From (356) show that (?: =axi

100. Velocity. Let P be any poinj}‘j; space and let g and r
be the position vectors to P O
from 0" and O, respectively o
(see Fig. 89) Obviouslyl®

*

¢ = a1, a0 that
_do_da_ g€ y
VEm T ds\*\‘%

Now ris g vectof measured in
the O-p-y-z JB¥stem, so that
(356} applies¥o r. This yields

17> S 5| )" S £ '
-‘d'_i = ZJT\‘F wXr El.l’ld . F1a, 89.
AN
~O do da Dr 357)
9 V=Eé-§+"’xr+dt (

This result is expected. % is the drag velocity of P, @ x T i8

Dr .
the velocity due to the rotation of the O-z-y-z frame, and a

the velocity of P relative to the O-z~-z frame. The vector sum
18 the velocity of P relative to the frame O'-E--¢-

N\
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101, Acceleration. In Sec. 100 we saw that

do da Dr
VoG T atexrty

To find the scceleration, we differentiate (357) and obtain

dv _d% da | d d Dr) ¢
@ Tar Tar Tty (dt ,\,(?}’8)
€ N\
We apply (356) to » x r and obtain O
d D A ’.}‘:
Ef(w XTI} =@ X {0 1) +dft("t‘w.\’>{‘f)
Similarly v
L) < 4R
a\a) ~ X @l a\a
80 that (358) becomes \ O
d% d%a .,j.:’;. ' do Dr D
=22 ) e M = 4 == (359
ar " ap TOXORUE G X Jex g o0 (359)

AN
Let us a.na.lyzi Q-‘a.éh term of (359). If P were fixed relative

. D D2
to the moving frame, we would have d—tr = -(E:- = () and conse-

guently .Ei i@zz\oﬁld still suffer the acccleration

::}'1. dza' dm
'\\ dt2+mx(mxr)-i—§t-xr

&
&l

(This vector sum is appropriately called the drag acceleration

o’

of the particle. Now let us analyze each term of the drag accel-
eration. If the moving frame were not rotating, we would have

“

© =0, and the drag acceleration reduces to the single term fﬂ_?

This is the translational acceleration of O relative to ¢/, Nowin
Sec. 84 we saw that o x (0 x £) represcnted the centripetal accel-

eration due to rotation and % X I represented the tangential

component of acceleration due to the angular-acceleration vector
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d . . . Dy
&, We easily explain the term T as the aceeleration of P

di
relative to the O-z-y-z frame. What, t-hén, of the term 2¢ x %?
¢

This term is called the Coriolis aceeleration, named after jts dis-
covercr.  We do not try to give a geometrical or physieal reason
for its existence. Buffice to say, it oeeurs in Eq. (359) and must _
be considered when we diseuss the motion of bodies moving oveér
the earth’s surface. Notice that the term disappears for Dén-

: . . L\ X
ticles af rest relative to the moving frame, for then ’ =" It

7Ny
S %

also does not exist for nonrotating frames. - o\

Now Newton’s second law states that force I8, proportional
to the accelcration when the mass of the parficle’ remains con-
stant. Yt is found that the frame of referenge for which this law
holds bost is that of the so-called “fixed sthfs.” We call such a
frame of reference an inertial frame:?;}ny other coordinate
system moving relative to an inertial,fﬁame with constant velocity

: : . . Ay d% D

18 also an inertial frame, since {¥om (359) we have e
diw da ‘j.:' dia

because v = 0, @ = O gils constant, - = 0.

Let us now considerthe motion of a particle relative to the
earth. If # is the yector sum of the external forees (real forces,

£ ) . g2 f
that is, gravitation, push, pull, etc.), then d—; = and (359)

becomes "
"\ W

D AN g2 di Dr  f
i —d—l;”——mx(m XT) = = XT—Zox o+ (360)
G—

This is the differential equation of motion for a particle of mass
M with external force f applied to it.

Ezample 108. Let us consider the earth as our rotating frame.
The quantity o x (@ x 1) is small, since | = 2r/86,164 rad/sec,

and for 5 particle near the earth’s surface, H s= (4,000)(5,280}
2,

feet.  Also i—:) = ( over a short time; Egd—; ~ 0 over a short time;
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g0 that (360) becomes

D Dr  f )
Vi —20 T m (361)
Now consider a freely falling body starting from a point P at
rest relative to the earth. Let the z axis be taken ss the line
joining the center of the earth
§ . to P, and let the w-aas be
taken porpendicular o the 2
axis in the eastwarf, tirection.
We shall denote Whe latitude
of the place &3\, assuming
A > 0. Théléguation of mo-
tlon in #ho) eastward direction
is giver\by
gxf\\l ¥

@, oy L (f
Qatt C ). T \m),

] N” ) g
Fra. 90 AN Now f (foree of attraction)
JLEN . LN
N\, has no component castward, so

.3

i A fr .
that (-—) = {}, Wg\do not know — but to a first approxima-
M) O dt
P, Y\ de .
tlon it ig f,gik + 7 1. Moreover, o = @ sin A k + o ¢0s Aj

RN D
(see Flg\gé') Hence ((.) X -d—:-) = —wgt cos A, and

O
) a2 | |
O dt—:: = Zugt cos A (362)

»If the particle remaing in the vieinity of latilude A, we can keep A
constant, so that on integrating (362), we obtain
(gj": [ 52 A
g = ot cos
'33
T = %1“ cos (363)

(363) is to a first approximation the eastward deflection of a
shot if it is dropped in the Northern Hemisphere, If A is the
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distance the shot falls, then & = 3gi? approximately, so that
2 E
&= ohcos A (%)
3 g
Problems

1, Bhow that the winds in the Northern Hemlsphere have a
horizontal deflecting Coriolis acceleration 2w sin A at right.

anglcs to v.
2. A body is thrown vertlcally upward. Show that it stnkes
the ground $wh cos A (2h/¢)* 1o the west. N

3. Chocse the 2 axis east, y axis south, 2 axis along the plumb
line, and show that the equations of motion for ay freely falling

body are \
diz dz dy v
I + 2w sin § — i 2w cos'f}iE’: 0
Cdy \ \Eiy
Fri 2“’ dt

dzz
de?

where ¢ is the colahtude ~

dx
f—=0
hg %Smdt

¢

Fia. O1.

4. Using the coordinate system of Prob. 3, let us consider the
motion of the Foueault pendulum (see Fig. 91).

Let iy, s, i be the unit tangent vectors to the spherical curves
78, ¢. We leave it o the reader to show that the acceleration .
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along the i3 vector is 2 cos # 6 - sin § ¢ when the string is of
unit length. The two external forces are mgk along the 2 axis and
the tension in the string, T = —7r = —7i,, We +ish to find
the component of these forcos along the i; dircetion. T has no
component in the i; direction, Now ki, = 0, so that mgk has
no component along the iy direction.  Finally, we muat compute

Dr . .
the is component of —2w x 7 The velocity vecior is « <N\

)
Dr . . . 'S\
— = #iy -+ sin # ¢i; N\
dﬁ z’~:"
Also @ = w{— cos A j — sin A k), so that vy‘ewﬁéﬁét find the rela-
tionship between iy, iz, 15 and i, j, k. Y

Now \

. LY

IT=4 =snfcosei+sinddnej4 cozbk

. oi ' . AV . s .

iz = 0 Co8 § cos piANebs f5in¢j — sin 0k

i 1 (?11 '.‘E;I}; N . + .

=, TT T s Emed cos8
sin 8 dg  J8 ¢ ¢
Thus Q

AN
L= @i + (i + (- 1)is
=81 €08 ¢ i + cos 6 cost o iy — sin @ iy
igsein 6 8in o i, + cos § sin el -+ cos @i
&= cos 01, —sin 61,

\i:\,‘“ .] i1 i2 i3
AN\ Dr . ) )

—:% X ;g? = 2w| cos A sin & sin ¢ cosAcosfsiheg COSACUSE;
N _ ' ‘
d -+ sin X cos @ — sin A sin 8 J

] i sin 8 ¢
and

Dr .
(—-2¢o x-&) = f(sin A sin 6 sin -+ sin A cos 6)
i

Equation (361) yields

2008 090 + sin 03 = (4 sin X gin 8 sin ¢ + 4 sin A cos Eg ot
3
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For small oscillations, sin 8 = 0, and (364) reduces o
@ = e s8in A (365)

Hence the pendulum rotates about the vertical in the clock-
wise sense when viewed from the point of suspension with an
angular speed o sin X, At latitude 30° the time for one complete
oscillation is 48 hours. L

5. Find the equation of motion by considering the i, compox{.
ents of (361) for the Foueault pendulum,

Y102. Motion of a Rigid Body with One Point F1xed* The
mation of a rigid body with one peint fixed will depén&, on the
forces acting on the body. Let O-z-y-z be & coorgiiiate system
fixed in the moving body, and let O-£-4-{ be the ¢Boidinate system
fixed in space. O is the fixed point of the h dy In Bec. 94 we

dH,"
saw that ——) =L, Now Hy [ff’f xp—dr We can

"‘LJ

ar
replace % by o xr (0 unknown) IPhus

Ho"‘fffprx(mxr)df

\: f f [ olrte — (o) dr (366)
Let .\“.:u
'\“  e= wxi + wj -+ wk
& r=ai+yj 7k
50 that % "

20 o = @ g e+ o+ o)
\ + (Tw, + Yoy + o) (@l + yi + 2K)

= [(y? + 2Hw. — aywy — vzl
+ [—zyes + (22 + 2ay — y2odlj
+ [—zew, — youy + (2 + ye)w,]k

We thus obtain
B = [ fay? + ) dr — wf S fory dr — ouf [ fouz dr]

+ j[—'wszfpxy dr + wyff_rp(z? + z¥ dr — w,fffpyz dr]
t k[ =, [ [przdr — oy | [pyz dr + [ [ fola® + y? dr]  (367)
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The quantities

A=[[folg*+ 2 ar
B = [[[p + 2
C=[lo@+y)dr

D = [[[oyzdr (368)
= fffpzx dr £\
r =11y ar N

are independent of the motion and are constants{of the body.
That they are independent of the motion iz seemi\from the fact
that for a particle with coordinates z, ¥, 2,fhe sealars z, Y 2
remain invariant because the O-z-y-2 frameés fixed in the body.
The quantities A, B, C are the momedts of inertin about the
Z, ¥, 2 axes, and D, E, F are called t};rgs\\pi-oducts of inertia. We
agsume the s{udent has studied th‘esé mtegrals in tho integral
calculus, \V

Now from See, 90 we ha;v‘g"f%i»s— = D_gf 4 @ x B, so that
A\ DEHy
i"‘gLo o FoxH
Hence \\
L+ Lp@hie = 14 % _ pler 5%)
\J - od dt dt
:t\“ dw dCIJ dw
O~ 3 z v 2
—F — =¥ . pe
§ _H( dt+de Ddt)
~N deo e . e
R\ . (& e o da, _z)
O * a Pty
i j k
+ o, oy o,
Ao, —Fu, — By, —FoetBwy — Dw,,  — B, — Day+Cos

(369)

In the special case when the axes are so chosen that the
products of inertia vanish (see Sec. 107), we have Euler’s cele-
brated equations of motion: . '
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dw.
L= A~ + (C = B,
L, = B + (4 — Cae, (370) -
cs .
L=C~ 4 (B — A,
O\

vo3. Applications. If no torques are applied to the bodysof
Bee. 102, Fuler's equations reduce to 'S

’s

™\
i) A @? + (¢ — Blayw, = 0 ,\“ 3
(i) dw” + (4 = Cawws <0 ' (371)
: \
. K¢
- (i) ¢~ d‘“ (B - A)w;@y =9

K

Multiplying (i), (if), (iii) by c.;q; cog, s, respccmvely, and adding,
we obtain A

doy o dw, de,
- z - 0
wa ({&\Ak B(dy + Cw df
Integrating vmlds\\
\ 'waz 4 Bw,® + Cw.? = constant (372)
::\"‘

This is Gpe of the integrals of the motion. We chtain anoi&her
integm\j} y multiplying (i), (i), (iii) by dw,, Bwy, Cw., and adding.
Thig yields _

a\ 4 .
4 dw doy, e,
2 .,_” g, ¥ %, — =10
\ Ao, +Bw,,dt+0w 7
80 that
A%w,2 4 B%,? + C%w,? = constant (373}

If originally the motion was that of a rotatign of angular
velocity o about a principal axis (z axis), then initially
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wz(O) = (g
w”% = g (374)

and we notice that (371) and the boundary condition (374) are
satisfied by

w,,(t) = wy I\
w(f) =0
w.(f) =0 O

' )\

N/

o that the motion continues to be cne of cogsﬁ&‘ant angular
velocity about the x axis. Here we have used @%hecrem on the
uniqueness of solutions for 5 system of dichrgn}iEl eguationa.

Now suppose the body to be rotatin@his way and then
slightly disturbed, so that now the bodg \has acquired the very
small angular velocities wy, w.. We caf\fﬂ:eglect- wyty, 45 compared
Lo wywe and wewe.  Euler's equations now become

/
s N
LW Y

dwy L :; N

B 0 + (4 ,ﬁ:@)’w,mq =0

g (375)
C d“;‘ HB ~ Aaw = 0

\'\:\'} oy = constant

Diffcrentiating $he first equation of (875) with respect to time
N4

S & d £
-and elimingting _23’ we ohtain

N d
C
A\ 2wy, (4 — )4 ~ B)
5 et T e =0 e

If A is groater than R and € or smaller than B and ¢, then
A6 — B | |
@ = e > 0, and the solution to (376) is

wy = L cos (at + )

_aBL sin (af - a) ) .
Also w, = _c;(A—jF)_-_ by replacing w, in (375).
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Problems

1. Solve the frce body with A = B for «,, w, «,

2. A disk (B = () rotates about its z axis (perpendicular to
the plane of the disk) with constant angular speed w;. A con-
stant torque Lq is applicd constantly in the ¥ direction. Find
wy and e,

3. Bhow thut a necessary and sufficient condition that rigid\
body be in sfatic equilibrium is that the sum of the external
forces und extlernal torques vanish. R\,

4. A sphere rotates about its fixed center. If the qnly\forces
acting on the sphere are applied at the center, show thabilie initial
motion continues, D

5. In Prob. 2 a eonstant torgue L, is also."ﬁ}rplied in the z
direction.  Find w, and o,

*  104. Euler's Angular Coordinates. M:e%c:complicated prob-
lems can bo solved by use of Euler’s ahgtflar coordinates. Let
O-x'-y'-2" be a cartesian coordinate™system fixed in space, and
let O-z-y-z he fixed in the moving body (Fig. 92).

The -y plane will intersect thez’-y’ plane in a line, called the
nodal line N, Let 4 he t-hé;‘angle between the z and 2° axes,
¥ the angle hotween the 2/ ahd N axes, and ¢ the angle between
the nodal hine and the@ axis. The positive directions of these
anglos are indicafe {ﬁ.fhe figure. .

The three angles ¥, 8, ¢ completely specify the configuration

of the hody. Bow d—i’ fepresents the rotation of the 0-2-N-T*
2 s .
frame Nﬂ\lsﬁ*ﬁre to the O-z'-y'-2" frame; Zi? represents the rotation
O\ _
of thd O-2-N-T' frame relative to the O-2/-N-T" frame, and finally,
dg : .
‘\”}t—" represents the rotation of the O-z-y-z frame relative to the
a0 ds .
0-2-N-T frame. Therefore gb -+ 7 + ff, gives us the angular

velocity of the O-z-y-¢ frame relative to the fixed O-z'-y'-z' frame,
and

-G e, & 377)
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it Iy perpendicular.
three angular velocities are not mutus y
Th\;fe now de%;lne iyj, k, i, j, k', N, T/, T as unit veetors along the
oY e, y, 2, N, T, T axes, respectively. Thus
H ? i

Wy Ao e
=g TN+,
=w:i+wyj+wsk

= @A’ + ayf + ok (378)

Fra. 92,

Now it is easy to verify that

i= cos ¢ N + gin ¢ T
i=—sinpN+4cosoT
"=cosy N —giny T/
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j=sinyN +eosy T/
ik = g8in T Kk = sin psin ¢
j kK = cosp T k' = cos ¢ sin 8

so that
| di de de
wr = i=—k-i — .1 i P
e T i g Mg ke
. . dY de
= ov _ av A
8in ¢ sin § i + cos tpdz
Oy
¢y = COY ¢ sin A d—f — sin pj—f | \i\
— d‘lb d@ l":‘&
w; = cos 7t -+ i '.2:“\ )
.\:"\,\
Rewriting this, we have NN\ 4
57,3
dy e
Wy = 7 sin & sin ip:'i’dt €os ¢
- W a8
wy = ji: gin ?“qua - a gin ¢ (379)
v WO de
Wy = 080 b —=
di di
A ' “,\\
Iso \.\\ J N N N
2= 2 L ye [ ZE = i
©T el T e = (dt) + (dt) + (dz)
:‘.; d d
REs) 4 2 cos B—g’i {380)
O~ dt di
For t&%}wd frame
) e . . . ,de
~O wy = @1’ = cos P — + sin¢sinf—
Y dt dt
W a6 . de 1
wyv=m-j’:sin;b§-—cos¢smaa (381)
& de
wy =w-k —R—t-l-cos&dt

L -
106. Motion of a Free Top sbout a Fixed Point. Let us
assume that no torques exist and that the top 18 symmetnc

(A = B). Euler's equations become
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o A% 4 (0 Ao = 0

(i) 4 % + (A ~ Chaoms, = 0 (382)
do,

(iii) % d‘_‘; =0

Integrating (iii), we obtain w, = @, — constant, Multiply\ {i1)
by i =V —1and add to (i). We obtain \
d _ Oy
| &_i (e T:Wy) + (C e A)“-‘O(Wy - T:“-‘z) :.\'@

W
N

or <

A% (s + 1w,) = dn(C ~ AT 1)

Integrating, AN
@y + 1w, = ae[i{.ai_sl;)fﬁ.]mut
80 that v
¢z =& CO8 of
wy,%’ w gin ot (383) .

where ¢ = [((§ — A)/A]w;';;é’md a 18 a constant of integration.
Now w? = w2 - w24 o2 = 42 + wo? = constant, =0 that the
magnitude of the angular velocity remains constant during the
] ’\‘..' dH ) ]
motion, MOIjE;{k‘er, Z¢ = 0 s0 that H is a constant vector in
fixed space, We choose the ¢’ axis for the direction of H. Now

D7 H = Awd + Buj + ok

%w‘ = Aacos 6ti 4+ Aw gin atj + Cuk (384)
Tj}iis shows that H rotates around the » axis (of the body) with

(onstant angular speed ¢ = [(C — A)/AJws, and since H is fixed

o/

In space, it i the 2 axis of the body which is rotating about the
fixed &’ axis with constant angular specd —¢ = [(4 — (/)/A)wo
Also H -k = [HI €08 § = Cln, 50 that # is a constant since
|H| = constant. We say that the top precesses about the 2 axis.

106. The Top (Continued). We have assumed above that the
weight of the top or gyroscope was negligible, or that the gyro-
SCOpe was balanced, that is, sugpended with its conter of mase
at the point of support, so that no torques were produced. We
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shall now agsume that the center of mass, while still located on
the axis of symmetry, i not at the point of support. We now
have the following situation (Fig. 93):
L=1Ik x (—WK}
= Wisin 6 N

The three components of the torque are

L,=Wlsinfcos g N\
Ly = —Wlsgin #sin ¢
L,=0

I

WAL,

e Fic. 93.

. oo

Euler’%ﬁgnatlons become
O\ desy

‘v‘&.\ Wlsin 8cos o = A _;T + (€ — A)wye:

\

/*\ - d Y
N/ ~Wisin 6sin ¢ = A d—“; + (4 — Caeeos (385)

duw,
dt

I:IGDCB w. = wy. Multiplying Eqs; (385) by ws, wy, s, respec-
tively, and adding, we obtain

0=C for A = B

1d ‘
24 (Aw,? + Buy,? + Cw,?) = Wisin #{w, cos ¢ — wy sin ¢} (386)
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. as
From (379) we have w, cos ¢ — wy §in ¢ = a5 that (386)
becomes
14 Aw.? + Bu,® + Caw,?) IT’Esmé‘B
(1) =
2dz( @+ Bo, at
and integrating - A
Aws? + Bay? + Cu,? = —3W] cos 6 - k ',\ )\*
or, again using (379), ‘ 3
( N
VAL de o\
B s (@) oo

o and o are constants,
Now sinee I, = L+ — 0, we lkwe ng = gonstant. Also
H = Awd + Boj + Cuk, s0 that~ )

Hs=H ¥ = A, sin ¢ sin qa+ Awy eos ¢ 8in 8 + Cw, cos 6
O = constant

™
N

Replacing w, and «, by tﬁé‘ir’equa]s from (379), we have

d
4 ( ‘bsm” g sin? ¢ 3}-;§— sin ¢ sin € cos @ -4 @’E cos? p sin? ¢
dt L _ dt

~ it
dﬁ
(R 7 \C0S ¢ 8In ¢ 8in 0} + Cup cos 8 = constant (388)

7 s.'

or 4 —*x sin? g - Cuwp cos 6 = constant — H.
N

J.)etﬁ = H2/A, b = Cug/A, 50 that (388} becomes

N )

\, d_qf _ B—bcosé (389)
dt gin? §
From (379)
o= W de (390)
W, Wy = ar cos 8 + &

Using (389), (387) becomes

B—b ALY 2
(ﬁ) +(§§) = a —acosf (391)
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dz . df
Let z = cos 6, so that g - —sn BE, and

. dz\2
(8 — bz)* 4+ (;;g) = (a —az)(1 — 2%

Hence

- ﬁ) [(@ — az}(1 — 22 — (8 — )T Hde  (302)

: N\

This integral belongs to the class of elliptic integrals. If we can
2 AN

integrate and find 2, then we shall know M0
d B—b . dp d A\
— = = — -z

X1-# & RN

~\
The reader should look up a complete disoussion of elliptic
integrals in the literature, N

) Fre. 94.

" 107. Inertia Tensor. The moment of inertia of a rigid body
about a line through the origin may be computed as follows.
Let the line L be given by the unit vector 1 = & + mj + 7k,
and let r be the vector from O to any point P in the body,

r=git+y+2k

(see Fig. 94). The shortest distance from P to L is given by
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D =12 — (1r,)?

= @+ ¥ + 29 — (I + my + n2)?

= E+m®+ ey 2~ (a4 my + )

=Py + 2% + m 2 + 2 +- 32?4+ %) — 2mnyz

~ 2Unzx — 2Umay
Thus
I=[[[oD?az dy dx A\
= A2 4+ Bm? + ('n® — 9mnD — 2nlE — AmE

. 4 3 \ "
Let us replace I, m, n by the variables Z, ¥, 2, and lehts/consider

the surface y
o(2, y, 2) = Ax? + By 4 (22 — 2Dyz — 2;5,’:;;513 —‘ 2y
AN =1 (393

A line L through the origin is givern ,bj; the equation =z = 1,
¥ =ml, 2 =mni This line intersect-s:i?ﬁ'e ellipsoid ¢(x, y,2) = 1
for ¢ satisfying ~N
(AP - Bm? + Cn? — 9D — 20IE — 2miye = 1
or¢* = 1/I. The distancgfﬁfém the origin to this point of inter-

section is given by AN

& =B+ mr + et~
so that .\if}
\ b : i

L )

X 3

== (304)
AN/

We kitow that a rotation of axes will keep I fixed, for the line

an%’g'};é' hody will be similarly situated after the rotation. We

DO attempt to simplify the equation of the quadric surface

‘75‘.’(“7’ y,2) = 1. First, let us find & point P on this surface at

~\\J which the normal will he parallel to the radius vectar to this

" point.  The normal to the surface js given by Vg, o that we
desire 1 parallel to Ve, which yields the equations

Ax—Ez-Fy_By-Dz-Fz_Cz—Dy—ﬂ (395)
=4

Hi Y
Any orthogonal transformation (Example 8) will preserve the
form of (393) and (395) with «, y, # replaced by /, o, &' and
4,B, ... F replaced by 4, B’, , . . , F'. Now choose the
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¢ axis through P so that ' =0, ¥ =0, 2/ = ¢ satisfy (395).
This yields ~E/0 = —D’/0 = ¢, which means that

E =D =0,
. and {393} reduces to
Arx.rﬂ + ny.rﬂ _}_ szﬂ _ mprxfyf =1 (396)
The rotaticn
2" =z’ eos 6 — ¢ sin ¢ O\
y' =2 s5n ¢y cos 6 N
2= G\ D
with tan 20 = F'/(B' — A’} reduces (396) to ¢ O
Aux.rﬁ + B.r.rynﬂ + Crrzf.rg ='Ql': (397)

This is the canonical form desired. »We have thus proved the
important theorem that a quadrati)cf,f'or}n of the type (393) can
always be reduced to a sum of §Quééres of the form (397) by a
rotation of axcs. In the proofwe made the assumption that
there was a point P such that it is parallel to Vi, which yielded
(395). We eould have attived at Eqs. (305) by asking at what
poiut on the sphere @2 y? + 22 = 1 is o(z, %, 2) 2 maximum.
Since ¢(z, ¥, 2) is cqn}i}mous on the compact set

T et e=

such a DOii(&'\aﬁl‘ways exists. Equations (395) are then easily
deducec{.%(“IJagrange’s method of multiplicrs. '
Wﬂ@}n arrange the constants of inertia info & square matrix

N\

m\{ 7 A . F _ Ew

A% r={-r B *) (308)
-E -Db ¢

The elements of the matrix (an array of elements) are called the
components of 7. Under a proper rotation we have shown that

we can write
A7 0 0
I=f{o B O (399)

O 0 CH
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In general, under an orthogonal transformation, f will hecome

AT —F —F _
I=|-F B -p (400)
-5 -

and the components of 7 in (400) will be related io ihe compon-
ents of [ in (398) according to a certain law. We shall gee in
Chap. 8 that I is a tensor and so is called the inertia tensor,

Referring back to (367), we may write )
O
H. A -F —E m\ d
H)={-F B ~D){od (401)
H. ~E -D /X&)

from the definition of multiplication of magtﬁécr;, whare
AN
He' = Hi + HiV Hk
m:w,i-l—w,,j—{—wgk. :‘
' It J;l Iy
If we write (398) as [ 1,280,271, and
1% I3 I

H; = Hi+ Hyj + Hk
4 b, then (3 -
= wi + wa)yt w3k, then (367) may be written

£ 3
O Hi= Y Irw,, =123 (402

o

"’\Q:
‘Vh\i‘%‘fé equivalent to the matrix form {401).

™
NS

\ - Problems

o/

1. Find the moments snd products of inertia for a uniform
cube, taking the eube edges as axes.

2. Show that the moment, of inertia of a body about any line
is equal to ity moment of inertia about & parallel line through the
center of mass, plus the product of the total mass and the square
of the distance from the line to the center of mass.

3. Find the angular-momentum vector of a thin rectangular

sheet rotating shout one of its diagonals with constant angular
speed osy.
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4, If
- 3 -
Hs = 2 Iws,  Hy= Y Ia,
a=l a=1 ’
3
Hs = 2 WHay g = Y agw, S=123
=1 a=]
for arbitrary w,., show that A
8 3
E Is=a, = 2 Irag, B,6= 1,2,}\
a=i a=1 £\
O
5. Let us consider the form '\§
I =%+ 9y? + 1822 — 2xy — 222 —f\I‘Syz
We may write \\\ ’

I = (z? — 2zy — 2a2) —I—Qy ,liig,!z-i-lfiz2
=@ —y — 2)? + Sy K Wyz + 1722
E(x—ywz)2+8{z}+z)2+9z2

X2+Y2+32 \\

where X =z —y — 2 ¥, ‘zxx\/ww-l' 2), £ = 3z, a set of linear
transformations from zpy, z to X, ¥, Z.

Thiz method msy, b'b. employed to reduce any quadratic form
to normal form, K ever, the Hnear transformations may not
be a rotation of:h;;es Reduce 7 to normal form by a rotation of

axes. O
AN \ ¥4
£ )
N
.\,,
p s/
A\
Ay
O
) WV



CHAPTER 7
HYDRODYNAMICS AND ELASTICITY

108. Pressure. The scicnee of hydrodynamics deals with the
motion of fluids. We shall be interested in lieuids and gases, a
iquid or gas being defined as a collection of moleculeswhich,
when studied magcroscopically, appear to be continuows M strue-

ture. A liguid difers from a

solid in that £he liquid wil

yield to ang~sheuring stress,
however, Grull, i the stress
is coutirued Jong engugh,

All Jquids are compressible

to\\m slight extent, but for
~ldny purposes it is simpler
o congider the Liguid as being
N+ incompressible. We shall
Pro. 05 vv also be highly intercsted in

AN perfect fluids. These sare
liquids which possess b shearing stresses.

We now show 3t the pressure is the same in all dircetions
for a perfect flid) Let us consider the motion of lhe tetra-
hedron ORST (eec Fig. 95). The face ORT lhas a force acting
on it, sinc'a.:'(;’t..is In eontact with other barts of the liquid. Under
the aboyeassumption, this foree acts normal to the face. Call it
Af,. \H\WQ divide Af, by the arca of the fuce ORT, A4, we
Afy

‘Qb}a-fﬁ the pressure on this face, P, = i
\ ¥

The Hmit of this

N ‘quotient is called the pressure in the divection normal to the far,j-e
\»\‘ “ ORT. The ¥ component of the pressure on the face RST is

Pn'COS 8. Let £, be the ¥ component of the external foree per
unit Vglmr{e, and let p be the density of the fluid. The cquation
of motion in the ¥ direction is given by

1l

' d
Poag, - P, cog BAA, 4§, Ar E (p Ar 9_{)

[

230
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) dm
gince 7 (p &) = FTi 0. Now A4, = A4, cos 8, so that (403)
becomes

Ar 1 4 dy)
Py—P) 7= L 2 W
Py )+ AA,  AA,dl (P M (404)

As AA, -0, we have f;—ﬂ 0, so that if we assume f,, %{’ A
r 'S

finite, we must have P, = P,. Similatly, P, = P, = P, ©yp.
Since the normal n for the tetrahedron can be chosen arliityarily,
the pressure is the same in all directions and p is 2 poinfifunction,
p = plx, ¥ 2 ). Weleave it to the student to pI:O'fié that at the
boundary of two perfect fluids the pressure is contiiuous.

109, The Equation of Continuity. Considéxasurface S bound-
ing z simply conneceted region lying entiely inside the liquid.
Let p be the density of the fluid, so that.thétotal mass of the fluid
inside & is given by P\%

m={[] .g@,'y“,.z, 1) dr
R WS

Differentiating with 1'esp§ctr’éé time and remembering that x, ¥, 2
are variubles of integra{ion, we chtain
¢

\\‘% _ [Rfjggdf (405)

A/ ' .
Now thergmé.ré only three ways in which the mass of tl}e fluid
inside Srwan change: (1) fluid may be entering or leaving the

surfaddy" The contribution due to this effect is f f vp * dd-
T s

~f2) matter may be created (source), or (3) matter may be

S Aestroyed (gink). Tet ¢(z, v, {) be the amount of matter

created or destroyed per unit volume. For a source, ¢ > 0, and
for & sink, ¢ < 0. 'The net gain of fluid is therefore

f}![lﬁdr—[gfpv-dd (406)

Equating (405) and (406) and applying the divergence theorem,
Wwe obtain

T
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% + Vv = ¥le, y, 2, 8) (407)

This is the equation of continuity. For no source and sink,
(407) reduces to

g .
SV =0 £408)
' . Oy
If furthermore the liquid is incompressible, pr\eonstant,
gtg = 0, and (408) becomes ) (”322
Vev =0 O (409)

If the motion is irrotational, thaﬁv\\fs", if f'vdr =0, then
V = Vg, so that the equation of con’tihuity for an incompressible
fluid possessing no sources and(difks and having irrotational
motion is given by =N

5"

v =0 (410)

We call o the velq&}; potential. We solve Laplace’s equation
for ¢, then eom&ite"the velocity from v = V.

Problems

1. If theXelocity of & fluid is radial, ¥ = u(r, {), show that the
equitj?;i'of continuity is

2 8

N 9% , % 03
Ny —— — 2 — t
,..\\‘ a + u ar -+ 7o (:r' u) ‘b(?-’ )
Y Solve this equation for an incompressible fuid, if {r, ) = 1/7%
—_— 2 g2
2. Show that v = 2eyz (@ ¥z ¥

@ g T Tt
possible motion for san incompressible perfect fluid. Is this
motion irrotational ?

3. Prove that, if the normal velocity is zero at every P?int
of the boundary of & liguid oceupying a simply connected region,
and moving irrotationally, ¢ is constant throughout the interior
of that region.

2kisa



Suc. 110] HYDRODYNAMICS AND ELASTICITY 233

4. Prove that if ¢ is constant over the boundary of any simply
connected rogion, then ¢ has the same constant value throughout
the inter

5. Exprass (407) in cylindrical coordinates, spherical eoordi-
nates, rectangular coordinates.

110. Equations of Motion for a Perfect Fluid. Let us consider
the motion of a fluid inside a simply connected region of volume
V and bhoundary 8.~ The forces acting on this volume are

(1) cxternal forees (gravity, ete.), say, f per unit mass; (8)
pressure thrust on the surface, —p d¢, since dé points ou'twérd.
The total foree aeting on Vig O

prfd?—ffpds—fff(pf o

The lincar momentum of ¥ ig
- s D
M= [f] i
and the time rate of change of lineazcl*ﬁlomentum is
B[] g
~ [ﬁ[ p—-d-r-i—fffv-(pdf)

since the volume) V changes with time. However, pdr is the
mass of the) volume dr, and this remains constant throughout

dM
the mot.’g&(’};.\so that i (pdr) = 0. BineeF = —E; we obtain

o
#

|

S e ][]

\ ThlS equation is true for all ¥, so that

_ . av
i —Vp=ry
or
@:f—l\:’p (411)
dt ?

This is Fuler’s equation of motion.
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dv  av _
TFrom (76) we have that i P 4+ {v - ¥)v, 90 that an alierns-
{

live form of (411) is
| a 1
l+(v-\7)\?=f——v’p (412)
at P

Also from Bq. (9) of Sec. 22, vv?
that (412) becomes

av 1 1 ::\t\'
— 4+ 5 Vvl — v % (V x v) =f — = Voess 7 (113)
PN

f

2v % (V x v) +2(V-V1{, 50

at

111. Equations of Motion for an Incompresmfblé Fluid under
the Action of a Conservative Field. 1If he external ficld is con-
servative, f = —Vx, so that f — (1/p) Vpo= —Vlx ~ (p/p)] it
# = constant. Hence (413) hecomes Y,

ot

/
s N

ov ~T p
5~ VX (Vxv) = .ﬁv‘(x +E 42 v2) (414)
O ,
We eonsider two special (;aget;

(a} frrofotional mot-?fo-r{.u}ﬁi‘ =Voand V x v = 0, 20 that (414)

»\;f_ﬁ_f_]_'vz .
f\ p 2

av
becomes — = —vy
at

\, - av
) S&eadyﬂj.qz.gtwn. Fri 0, so that (414) becomes

¢ 3
\ S
)

¢ 1
o° vx(va)=v(x+3+§v3)
P

,Fé’r this case we immediatcly have that

ezt
p 2

Hence Vix + (p/ ) + §v?] is normal everywhere to the velocity
ficld v.  Thus vis parallel to the surface x + (p/p) + %v® = con-
stant. The curve drawn in the fluid so that its tangents are
parallel to the veloeity vectors at corresponding points is called
& streamline. We have proved that for an incompressible perfect
fluid, which moves moving under the action of conscrvative
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forces and whose motion is steady, the expression x + (p/p) -+
$v? remains constant along a streamline. This is the general
form of Dernoulli’s theorem. If x remains essentially constant,
then an increase of velocity demands a decrcase of pressure, and
conversely,

Problems

1. If the motion of a perfect incompressible fluid is both steady 2\

and irrotational, show that x -+ (p/p) + v = constant. N
' dv (\D
2. T¢ the fuid is ab vest, — = 0. Show that V x (o= 0,

and henee that £+ 7 xf = 0. This is 2 necessary qpn‘d:l‘tion for
equilibrium of a fluid.  Why must of be the gradient’of a scalar
if equilibrium iz to be possible? @)

3. If a liquid rotates like a rigid body wi@{constant angular
velocily m = ok and if gravity is the only external force, prove
that p/p = Je®* — gz 4 constant, where'r i the distance from
the z axis. O

4. Write {411} in rcct-angular;; cylindrical, and spherical
coordinates. N '

5. A liquid is in equilibrifim under the action of an esternal
forcef = (y + )i+ (2 K+ @+ yk. Find the surfaces of
equal pressure. o)

6. II the motion‘ofthe fiuid is referred to a moving frame of
reference which ¥Otates with angulur velocity @ and has transla-
tional veloeity, W show that the cquation of motion is

<

PR i T Dr | Dx
f—’g?‘p’I'&?+E?Xr+wx(wxr)+2@x'a+dtz

an“(&f't;-‘iia.t- the cquation of continuity is
O Dr
QO QE+V.(9__)=0
ot at
7. The energy equation. For a simply connected region B with
boundary S, the kinelic cnergy of E is

—ee
Jid

Let the surface S move so that it always contains all the original
mags of /2. Show that '
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3/ [] o ar
"fff (f-—vp)dr
=[[]v = [ [ e d6+fffp @) a5)
a

Analyze each term of (415),
8. For irrotational flow show that O\’

.'\

3 1
—61-:-_—. _(x+2+—vz)+c(i);~ '.

H

ar
dt

andlfphp(p),—~+ +x+f p*D{f}\

112, The General Motlon of a Flu@.‘ Let us consider the
velocities of the particles occupyingian’ element of volume of
Baidd Let P be a point of the
\Velume or region, and let ve
O\ represent the velocily of the
fluid at P (Fig. 96). The veloe-
ity at a nearby point Q is

Vg = Vp + dVP
= Ve 4 (drV)ve (416)

from (75). By (dr-v)vs we
mean that after differentiation,
the partial derivatives of v ure
caleulated at P, We now re-
place dr by r for convenience,

\‘ Fre., 96. 50 that r = i -+ yj + 2k if we
Q consider P as the origin and =z,
\ Y, z large in comparison with- z% y? 22, zy, ete, Equation (416)

now becomes vy = Ve + (1 Vv, Now

V(r-w)—rx(vxw)+(r-V)W+W (417)
from (9), (10), (12) of Ses. 22,
Now let
av, - v av
W=t Vive = 2 2% - Y 418)
“aae T Vol T (
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and hence
dz oy dy a
dz dx|p dy dylp 9z dz
=w
. . av advl @ ]
We did not differcntiate the —| » —| , 2| , since they have
8$p 3yp sz

been evaluated at P and so are constants for the moment, Thus,\
using (417}, wo obtain

: .\:\’
W=V -w)+5(Vxw xr ~419)

Moreover, v =ve + W, 80 that Vxv =V xw = (Y‘:}‘:v)p {see
{(418}], and ,\~§2.
Vo = Vr 4+ HV x V) xT 4+ 3V(EN W) (420)
7R
Tt is easy to verify that r + w is a quadratic form, that is,

rew = Az? 4+ By® -+ Cg? -1—29::;3 + 2Ezx 4 2Fzy

and 0 by & rotation (Sce. 107)we can write

r-w = ax® 4 by + cz?

N

and "\
1Ew) = aai + by + ok
We may now writey(420) as

X7

Ve = Vo 4 xt + (azi + byj -+ cz) (421)
."\".

\1’he1:e,¢;§ 3V x Vs ‘
I\%us analyze (421), which states that the velocity of @ is the
‘M’ of three parts: ]
Wi The velocity ve of P, which corresponds to & translation of
the element, )
2. © x r represents the velocity due to a rotation about a line
through P with angular velocity $(V X ¥)». ] _
3. azi + byj + csk represents a velocity relative to P with
tomponents azx, by, cz, respectively, along the z, y, 2 axes.
The first two are ri gid-body motions; they could still tak'e place
if the fluid were a solid. The third term shows that particles at
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different distances from P move at different rates relative to P, ¢
we consider a sphere surrounding P, the spherical element is trans.
lated, rotated, and streteched in the dircctions of the prineipal
axes by amounts proportional to a, b, ¢. Ilenee the sphere i3
deformed into an ellipsoid. This third motion 15 called a pure
strain and takes place only when a fubstance is deformable,
Fach point of the fluid will have the three prineipal directions

 associated with it. Unfortunately, these dircetions are nhi the

same at all points, so that no single coordinate s ystem will suffice
- € N\
for the complete fluid. AN
The most general motion of a fluid is that described above and
is independent of the coordinate system used$to) describe the
motion. It is therefore an intrinsic propertyd o the fluid,
113, Vortex Motion. If ai cach pointef\d curve the tangent
veetor is parallel to the vector o = z(FYX v), we say that the
SO A @ iz
curve is a vortex line. Thig implies, that == = 27 _ ¢ where
"N\’ Wz oy Wy
dz, dy, dz are the components of the tangent vector and

© ZL{J“}‘ wyf + w.k

The integration of thig System of differential cquations yields
the vortex lines. Thewortex lines may change ax time goes on,
since, in gcnerakmim-’ill depend on the time.
Let us nowycalelilate the circulation around any closed curve
in the fluid, .\
N\
AN C=9SV-dr=ff(va)-d6 (422)
:'\:. r 5
_lf‘.&"v =0, then C = 0. Thisg is true while we keep the curve
ANfxed in space. Let us now find out how the circulsticn

s :}aﬁanges with time if we let the particles which comprize I' move

\‘;

aceording to the motion of the fluid.  As time goes on, assuming

continuity of flow, the closed curve will remain closed.
Now

ir
C=0Qv.dr - ) (423)
1_9(,5 dr f v ds ds

where sisarc length along the particular curve I¥, at some titlﬂﬂ 2
At an instant later the curve I has moved to a new position given
by the curve I, The velocity of the particles over this path 13
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slightly diffevent from that over I, and, moreover, the unis
the

tangents ;— have changed. The parametor s is still a variable of
I8

integration and has nothing to do with the time, Therefore

ac dv dr d dr)
=g — =}
@~ d s 3+15,],5" dz(ds ?

dv dr d {dr
=Sﬁa-£ds+56v- (dt)ds (424)

Fuler’s equation of motion (411} for a conservative ﬁe}d

f=—-vyx m\\
d _
is d_v = —Vx — 1V;e) = —VV, where ¥V = x\+ Jdp/e. There-
¢ P N
fore }s
ac Vo T dpt
o= SﬁvV-d{-ﬂ:.¢2 T ds
S 95d(]gf{’_' ) =0 (425)

We have arrived at a theorem by Lord Kelvin that the cireu-
lation around a closed. (’urve composed of a given set of particles
remaing constant f\HIL ficld is con-
servative, prowded hat the density
p I8 a function tmhr of the pressure p.

If we now conslder a closed curve
lying on, & tube made up of vorfex
lines, LQt ot encireling the tube (see
Plgwﬁf) then

'"\;"\' ¢ = Slgv-dr

-—-fova-dd-:O

since d¢ is normal to ¥ xv. From Fia. 97,
Kelvin’s theorem, ¢ = 0 for all time,
S0 that the eurve T always lies on the vortex tube.
114, Applications ) \
Example 109. TLet us consider the steady irrotational motion
of an incompressible fluid when a sphere moves through the fluid

A\
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with constant velocity. Let the eenter of the sphere travel along
the z axis with velocity vo. We choose the center of the sphere
as the origin of our coordinate system. 1'rom Sec. 110, Prob. 8,
we have

f-lgp &
. P b= dt
and
Dr' N
Vel—1}=0
) "
¢\
Dr . AN
Henece i Vo, so that V2 = 0. Now at pointsg 0w the surface
N
D NS “ 70
of the sphere we must have __r) = 0, go%hat {9 ) = 0.
di radially N Q:. ‘\ T Jor=g

We look for a solution of Laplace’s eqﬁatinn satisfying this
boundary condition, so that we try N
.

o= (An;{-j) o0 8 (426)

(see Sec. 67). We need N

2

de N 2
(@ﬂha (A —a—-f)cosﬂ—ﬂ

EN\/

I &7,

so that B = @472, Moreover, at infinity we expect the veloe-
ity of the fiiid’ to be zero, so that the velocity relative to the
sphere s’}iq‘z’ﬂd be ~v,. Hence

\Y
.\“' = -8—(’0 = = —
wi\ s 02 Jom 4 Yo
N d
o’ "
@ = —p, (r + E~) cos 8 (427)
2y

The velocity of the fiuid relative to the sphere is given by v = Ve
and the velocity of the fluid s v = Vo 4 pk,

Ezample 110, Let us consider a fluid resting on a horizontal
surface (a-y plane) and take z vertical, Let us assume a trans-
Verse wave traveling in the g direction. TFor an incompressible
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fluid
2
Vie= S+ =0 (428)

We assume a solution of the form @ = A(z)eh(z i Sub-
gtituling into (428), we obtam :

LSRR 2 2 -
e’*( z)[ %A()—[—dA] 0 N\
so that R\,
A4 _ 4 Ot
FEENY SO )

¢°¢

"
The solution to (429) Is A = AgetsM: 4 B, e“?"'?"" and z Teal
solution o (428) is N

'.\27r
= (A e¥ M 4= Bg (17} 608 N (x — vt)] (430)

The fluid has no vertical ve]ocivtg’“’i;‘f the bottom of the plane on
- . "’:"’é - -
which it rests, so that K 2 Ef =0 at z=0. This yields

Ay = By, s0 that m\

P = (](8 \"}’ + e /M) cog [2; {(x — vl)]

\t\fg,cosh (2: ) cos [% (z — 9t)] (431)

From Q%b 8, Sec. 110, we have

S

A\ O d¢ _ — P 1 2 Cit
V i (x+p+2v)+ (®)
and for a gravitational potential, x = g, so that
% _ _ (gz + 24 192) + ¢ (432)
ot s 2

Wo now assume that the waves are restricted to small ampli-
fudes and velocities, so that we neglect §v2. Moreover, at the
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surface, p, the atmospheric pressure, 1s essentially constant, so

that i—f = 0. Differentiating (432), we obtuin
8% dz  dO
ar T Uy T dt (433)
. oz do O
and again at the surface — — b: = —-, 80 that (433) hecoMes
at 0z A\
o
e do  dC o’
Lo g 434
o = Tl Ty O (434)
R
Substituting (431) into (434), we obtain v
a\/
27t 2 2 R i)
—p? W Ay eosh T % cos [3\2 (x —?,'f}\]‘
Ay . 2n N T2 a
= — %—u 511113:5\’—:;’3 cos [i: (x — L‘i)] v 48

In order for ¢ to be depéndent only on ¢, we must have the
coefficient of ¢os [(2#@ (# — vf)]identically zeroin (435). Hence
)

4 ?é 3 2 2
An(;_\_hj cosh T?r z + %g sinh % z) =0 (435a)
or WO

:\' A 20

Q)" v = —-'gtanh—z

& 2 70

§~\’f{In deep ‘water z/\ iz large =0 that tanh %z = 1, and the

" velocity of the wave is u. = (Ag/2m)%,

Problems

L. Show that for steady motion of an incompressible fluid

under the action of conservative forces, (v« Vjo — (@ - V)v =0,
wherco = v x v, :

d
2. Show that 5 ((_‘)) = (‘f . \7) v for o conservative system.
» Q
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3. If € is the circulation around any closed cireuit moving
. dac 1
with the fluid, prove that = 95100! (_) if the field is con-
p

servative and if the pressure depends only on the density.,

4. Bhow that v = Zazyi + a(2® — y?)j is a possible velocity
of an incompressible fluid.

5. Veriiy that the velocity potential ¢ = Afr 4 (a2/r)] eos &\
represents a stream motion past a fixed circular cylinder.

115. Small Displacements. Strain Tensor, In the ahtenge
of external forces, a solid body remains in equilibrium Anél the
forees hetween the various particles of the solid are in etuilibrium
becaunse of the configuration of the particles. If e:{tcmal forces
are added, the particles (atoms, molecules) tend zb redistribute

. themselves so that equilibrium will occur aghth. Here we are
interceted in the kinematie rela- %a‘,\ - ,
tionship belween the old positions i~ — P
of equilibrium and the new. We ¢ f /
shall assume that the deforma-e, 130 F 5
tions are small and continuowus, Fro. 08.

We expect, from Sec. 112,%that

in the neighborhood of & giyen point Py, the remaining points will
be rotated about 2 and will sulfer a pure strain relative to Py.
Lot 1 be the positi '\xirez,-t.or of P relalive te Py, and let s be the
digplacemoent vecto&uffcred by P, and s the displacement suf-
fered by Py (Iige98). Then

.ﬁ\“’ § =8+ ds =8+ (T+V)8 (436)

o ’
Let s.%\'u(:r., y, z, DI+ vz, y, 2, O] + w(z, y, 2, k. Since we
will Be'dealing with static conditions,

4 ~\' '3

O ) s = ulx, g, o) + v(z, 4, 2)j + Wz ¥ DK
From (420),
s = 8+ 3(V x8)r, xT + 3V(r - W) (437}
where
as o8| as
= -_—— — o —
v xaxf’n-}-yayf’n d2|p,

since s = v Af, )
Wo arc interested in the position of P after the c}efonna.tm'n
(now P’} relutive to the new position of Py (now Po ). This is
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the vectorr’ = r 4 g — Sgy OF
=144V x8)s x1 + V(- w) (438)

Since #(V % 8)p, x 1 1epresents a rigid-body rotation about Py,
we lgnor(, this nondeformation term and so are interested in
+ 3V(r-w). Now
1 O
r+§V(r»w) =zt ¥y + 2k

I
é ( axp,,+ yﬁa;ls%ma‘)
1 ( ”é'a'| , O )
+ 2 v 33;‘ Pa ,} 33!1&1 T Nle,
+£V( \ 63.'!' _!r“dc'iu )
2 azipo dz |
and
1 ».3: "
r+ §V(r w) O

i
E & ou Yy {ow ﬂ") ﬂ( ]1 139
f.z(ax+az)+2(ay+az HEANRE S L

£

Thé\pazrtml derivatives are evaluated at the point P,
\t U8 now consider the matrix

.~{ > .
./ : du 1 (au av) 1 (aw (?u) ||
3 1 — R B i S EE =1
\ _+63~: 2 6y+ax 2 ax+62 ‘|
. Tfou oy o Ifow vy |
O H T IS v
s 2\s T Yo s\ay Ta) | ¢

1 fow -au) I(c?w- av) dw H
2(ax+az 2 6y+gz 1+§

The nine tomponents of this matrix form the strain fensor. If
We write r = gl . % 1 o and r' =y + 4% + 3k (zee
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Example 8), thent" = r + 3 v(r+ w) may be written

yf = 811351 + 32‘.332 + safx“, i = 1, 2’ 3
or

3
= ) so= (441)
a—1 £\
We shall see in Chap. 8 thut sineo r and r are vectors, thef,yof
necessity, the s are the components of & tensor. Notice\that
s = &, 30 that the tensor is symmetric. \
The ellipsoid which has the cquation |

(r2)ee e (i)

0
-}-(a—w-{-@)yz-{-( - )za:—l (442
dy  dz

T
< 3

18 called the strain ellipsoid. From Sec 107 we know that we
can reduce the cllipsoid to the form

”+By”‘+c”—
by a proper rotatmn,\ The strain tensor becomes entirely
diagonal, \\

4 0 0
<" Héf'll=‘ 0 B 0
o o.C

,\' ’
In the ditgrtions of the new z’ , ¢, 2’ axes, the deformation is a
pure tsrﬁnalaﬂon, and these dnectmns are called the prinecipal
dllec{’mns of the strain ellipsoid.

N\ Lat us now compute the change in the unit vectors, neglecting
he rotation term. The unit vector i has the components
(1,0, 0), 20 that from (438) and (439)

; du 1{du a-u) .1 (aw au) K
— o — Ly Z)i R +
o (1+6x)1+2(6y+ax1 2 dz
au 61'

Y .
By neglecting higher terms such as ( ) ay P , we have

I = I‘l + gﬂ‘ Similarly j— s and |r] = |1 + 1k 1
-
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' _ 4 .
and ]r3[ = '1 4- —ég The angle between 1, and T2 13 glven hy

1Ty ay

r du
0086=m%5?—j+5&;’ oo

The terms of the strain tensor are now fully understood, . The
volume of the parallelepiped formed by 1y, 1o, 15 s O

N ¢

2 N
o &y dw ™
V" = + g A2 1 - o —
Ii+To 13 +8x+6y+§g‘“'
80 that o\ 3
Vi—V ou  ar g NON
_.?_zg_x_;_q_{_—_:v.s (443)

" 3

RN .-
"The left-hand side of (443} isxbdependent of the coordinate
system, 80 that V - § is an invariang.
Finally, we see that the deformation tensor duc to the tensor
FV(r - w) has the components
dw 6&) I
lguEca §
(6:1: + dz |||

N 1 fou ay) 1
LY KL AN
:\ 2 (ay - dx 2
1

2

el = 1(@1 i L (5“ = @) '|'
“ [2 dy oz Ay dy R ||
DL 6w o\ 1/ sy duw
SED 160y
& dz 9/ 2\3y ' 9z az
\Y 16w g\
N
~.\ j b o’ + ozt ( )
w\i?:s?here
N Ul =y, 2=y
3w = 'U, xz =y
wWo=w, =y

116. The Stress Tensor., Corresponding to any strain in the
body must be an impressed force which produces this gtrain.
Let us consider a cube with faees perpendicular {o the coordinate
axes. In Sce. 108 we assumed no shearing stresses, but now we
consider all forees possible between two neighbaring surlaces.
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Let us consider the face ABCDH (Fig. 99).
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It is in immediate

contact with other particles of the body. As a consequence, the
resultant force £, on the face A BC'D can be decomposed into tjhree

forees: fee, tyz, ks, Where £,

is the component of tz in the z direc-

tion, 4. is the component of £, in the ¥ direction, and ¢, is the

{
lj
o .
D t C )
// :"\\ v
/, "‘tlﬂt_ \ N/
N
AY 3 N
txx 4 '\'
A\
)
Q ’\\ z -y
A
¢ 3
":” -
N
.s,’f"
X “n -
' N Fre. 09,
. \‘} :

component; of ¢, i the z direction.

We have similar results for

the other two fa:e§:§ and s0 obtain the matrix

E"\x.’?’\”' ‘ iza; t;y t“
N\ =t tw e (445)
”:3;\ i taw t::.r tzs[
§..\~;

These are the components of the stress tensor.
By considering a tctrahedron as in Sec. 108, we immediately
see that if J¢ is the vectoral area of the slant face, then the com-

bonents of the force f on this face are

where ds, < {. daé, ds,

f-l“: = iwz dsx + txy d!S‘g + imd&',
fy = lys ds, -4 Lyy dsy + e ds, (446}
Jo == lnds, + fopdsy + L dss

=j°dd}dsz=k'dd°
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We immediately see that

E _ e

bow = » y = [
# a8, dsy

IS
and tha-t f;‘ = 2 tia dsm wherc .fl = f-’b: f2 = f:‘f} fa = ‘-fr-“-‘; i12 = t::y;

CZ=1
We shall sec later that this explains why the ¢ are
called the components Sof a
do I

tengor, O\’

¢ \.7)
z . Let us now sednsider the
4 3 resultant foreg Meting on a

: volume V, %3tk boundary 8
v (sce Fig, 400}, Wehavefrom

(41630

Forindon ds. + 1y ds, + L, ds,
\ Q ;T;hat
y/A—c S Sho=f [

= fgn

N b Ly dsy A Lon ds,

- N = jr f t.ds
X
Q" i
Fic. 109 ' o
A where t = ¢ + 1.§ + L.k
Applying ﬁhe\l}i‘v’ergence theorem, we obtain

<" ' Mew Oy . Ot
ST CoR I S
I T[f dx + A * dz (
i”‘\,‘Qt
Wiﬁr“similar expressions for £, F,.
8 By letting ¥V — 0, we have that the z component of the force

oD
L 3 . a 4] i ot
™ per unit volume must he (~t— ey + i

oz dy dz

117, Relationship between the Strain and Stress Tensors. In
the neighborhood of 5 point P in our region, let us choose the
three prinecipal dircetions of the stress tensor for the axes of our
cartesian cocrdinatc system. If we assume that the region is
isotropic (only contractions and extensions exist}, a cube with
faces normal to the principal directions will suffer distortions only
along the pr incipal axes. Henee the principal directions of the
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strain ellipgoid will coincide with those of the stress ellipsoid. In
thig coordinate system

” es. 0 0 w00
g = H 0 e 0 [l =10 4 o (448)
1 0 0 €z U 0 33

Our fundamental postulate relating the shear components with
those of the stress will be Hooke's law, which states that every >
tension produses an extension in the direction of the tensiopand
i wnal to it. We let E (Young’s modulus) bhe the(fﬁci}or
of proportivnality, Experiments also show that extenisions in
fibers prodiice transverse contractions. The constiih for this
phenomenon is called Poisson’s ratio v.  We thus gbtain for the
relative elonuations of ihe cube in the three pﬁh}ipa.l directions
the following:

AV
i I 14+¢ &
6‘1:}{}3:—3(32—]‘53): E"t‘}':%g(h"f'iz-i-fs)
1 1 Aa
fa = E_jfg —%(is‘}— t) ='v—:}'.?;*€52 —é(z1+ &+ ts) (449)
1 R\ ) e
e O e e IR R

The form:nias fog }:-:QT ¢y apply ooly in the immediate neighber-
hood of & point ¥, %ince points far removed from P will have
different strusg-ellipsoids, the prineipal directions will vary from
point to poinf? g Hence no single coordinate system will exist
that wou},dtﬁrfable the stress and strain components to be related
by thg\éiz\'ilple law of (449). Let us therefore transform the
Compdnents of the stress and sirain tensors so that they may be
refenred to x single coordinatc system. The reader should read
“Obtp. 8 to understand what follows. If he desires not to break

\t € continuity of the present paragraph, he may take formula
{456) with o grain of salt, at least for the present. Exam.ple 8,
Probs. 21 and 22 of Sec. 11, and Prob. 21 of Sec. 15 will aid the
reader in what follows,

If 32, 22 2% are the coordinates above, and if we change to &
Dew coordinate system !, 7% E* where

3
= 21 aqle?, i=1,23 (450)
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then ihe transformation (450) is said to bo linear.  Notice that
the origin (0, 0, 0) remains invariant. I, furthermore, we desire
distance to be preserved, we must have '

3 3
.Zl () = ‘le (zi)?

In Chap. 8 we shall casily show that this requires )

. N

2 G = §yy :’\t\' (451)

a=]1 N o
Equation (451} is the requirement the (450) be azdiation of axes,
Moreover, since we are dealing with tensors, wq@aﬁ san that the
components ot the strain tensor in the :1:1—:1:?-xf\c‘001’dirmte system
are related to the components in the ®AF4 system by the
following rule: AN,

' 3 3 .’:\
B = Y, NNGS0fens (452)
&

= 0if § =
=1ifi=j

=1 =T\

80 that, O
53“}}522 T8 = e+ eny Tl =61 e+ ey (453)

This\i?“};ﬁ invariant obtained from the strain tensor Jsee (443)].
A @ lar expression is obtained for the stress tensor; namecly,

that
NS - . -
& \ & bt l + Gy =ty oty 4y, = bty s
Equations (449) may now be written ag

i+4++

€ = B tl + 'lf/
1

£y = —_;7'_—'0- f2 + ¢ (454)
14+

"3:—_5,—*534“1;/
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wheare ¢ is the invariant

T - - -
—"Efﬁl—Fta"‘is) = "‘%(5114‘3224‘533)

From Fq. (452) we have
3 3

éﬂ':’ - E 2 aiaa-jeeuﬂ
A=1ga=1 ’
and since €.5 = 0 unless a = # [see (448)], we obtain O
3 3 ) \\'\‘
é‘l:‘ = E [+ 1 %Caq = Z ﬁldajaea :”}\ ™ 3
wel a=1 Y A\
3 T
+ A
- amﬁ( %l + u'/) »
" &v
=1 o ~"\
a RS,
1-+¢ \
=% E acart. + %.&ai“af“
a=1 \aﬁl
and NS
1 + e:‘ N
&y = —Eﬁ‘ﬁf + éy (455)

since &; = E Z a; g,{l},{; = 2 a0 e
E=la=1 -
Equation (435)\Q\the relatlonbhlp between the components of

the strain and sf’ress tensors when referred to a single coordinate
system. We ~héwe

x',\'” 14+e. o
N\NY B = fin — — (fn + foe + Ta3)
\§, K E
o\ 1+s. o
i,\t,{’ Bap = 7 Zoz -7 (fs1 + Fao + T23)
”\’d 1 L2
W 833 = —,"a" i - (f1s + faz + Tas)
T (456)
. 1- dz
€13 = E 12
. _14e.
€23 = 7 28
14
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Solving Eqs. (456) for the 7; and removing ihe bars,
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Wi obtain

y T
= T, [611 =+ 2 (e + ess + 633)]
E | ou o du av aw
1+ [ +l—2¢r( +6§T r?:)]
E Tow P A au')J
"‘”_1+a[ +1—2g( +6J+6z ~
I dw T ) \
yo_ B fouw _v. N 157
" 1+cr(6z+l—2cr ® \’}( g
fro = £y = F _ _E/__ (d_u 6'1-') \..}
T e T s o\ P N
s = 1y = —E (§+%) L9
P T Ml \e: T gy A,
K dw au) AN,
1 = ¢ A
TR To0 + o) (Ox t R
Equation (447) now hocomes .
F ET) o .é’i?:’ %y & \, 1
T
I 4+elazt " 1 —22\9x* Az dy | oraw/
A E i 9% Ay 32’”’)!
- .
~§\2(1 + o) (ay~ * 3y dx oo T J
o a9 (au Ay c?w)ﬁ
G 2]
2(1+a)[ +1"-20’d€ +6y+az
]—' \¥; ]
2(\‘%;) +1~_25 -s)
The Qrws per unit volume in the y and 2z directions are
N E 1 9
Q” ” 2(1+a)[ Iy T
’ E 1 8
F:____\I:Vﬂ. . '-——V'S:’
Tt VT T 09
8o that
E 1
f = —_—— VZ - . ] (4—58)
a'}[ STITE Vs

2(1 +

If welet R = R,j + Ryj 4 Rk be the external hody force per
unit volume, p the density of the medium, then Newton’s sccond
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law of motion yields

E

R+ i+

V(V-s)] — 0 (459)

I:vzs +
ot

1
1—2¢

T'or the caze R = 0, (459) reduces to

21 + o)

{V?s v, s):[ ~ s (4605
1—2a ae
.i‘\
In Sec. 70 we saw that a vector could be written as thedum’ of
a solenotdal and an irrotational vector. Let s = s, 44 83 where
V-8, ="0and ¥V xs; =0 Since (460) is linea['..ﬁlhé, we can
consider it as satisfied by s: and s, This yields{ &

E grg =, T80
olta e
and ' : N (461)
E 1 A } 3%,
: T VR V(Y s}l = p
2(1+o)[“2+1 SV T
However, N
vV x(V X..€2) =V(V+ 8 — Visy =0
g0 that ) {w’\
¢ N " o
‘L\.M)_ V252 = PG_% [462)
O F (1 — 20) a

¢/
In Sec.’«SQ,o\ve gaw that (461) leads to a transverse wave mov-
ing with $peed V. = VE/2(1 + o)p. _
EL;Q%ion (462) is also a wave equation, but the wave is not
trdbévorse. Let us assume that the wave is {raveling along the
'~\'ﬂi\ztxis. Then
) 3

5: = S — Vi)
= u(z — VOi + o(x — Vi)j + wiz — Vik
i j k
g a4 @
— e —_— —_— = 0
v xs: dr dy o2
woov W
ow . do
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80 that w and » are independent of z and therefore are independent
of  — Vi, Wo are not interested in constant dispkm‘:ments, 0
that s, = u(z — 7, i, and the displacement of s; is parallel to
the direction of propagation of the wave. The wave is therefore
longitudinal. The speed of the wave is

B TR
V, = \[ ___{___‘7)__
(I +o)(1 ~ 20} A
In general, hoth types of waves are produced, this &esult being
useful in the study of earthquakes, N
Problems \*

L. Detive (451). 2D
2 I 12 £ are the components of sl.'v:}ct-or for & cartesian
coordinate system, prove that the comiyonents 1, F2 J* of this
vector in a new cartesian coordin ategystem are related to the old
3 L&
components by the rule ff = E:;ﬂfﬁr t=1, 2, 3 nusing the
i

coordinate transformation (4503,

3. If the body forces arg\Negligible and if the meditm s in a

. N\ 1
state of equilibrium, show that vig + 1= o V(¥.a =0
pe -

2. If the straiu of Prob. 3 is radial, that is, if s = s(r}r, find the
differential eq a@nﬁ sutisfied by s(r).

5. Assuming % = 0 for g long thin bar, find the velocity of
Propagation ef the longituding] waves,

6. Ili\;z:%"E/Q(l + ¢} (modulus of rigidity) and

\O~ R
O ' (1 +o)(1 — 25)
("yshow that Eq. (459) becomas

)

\" ’s

REuvs+ 0+ wvw. g =p

a3
\ g

core of radius ¢ and 5 concentric eylindrical shell of internal
radius b with rubber. If the core is displaced a small distance
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axially, find the displacement in the rubber. Assume that ond
effects, gravity, and the distortion of the metal can be neglected.

118. Navier-Stokes Equation. We are now in a position to
derive the equations of motion of a viscous fluid. In the case of
nonviscous fluids, we assumed no friction between adjacent layers
of fuid. As a result of friction (viscosity), rapidly moving layers
tend to drag along the slower layers of fluid, and, conversely, the
slower layers tend to retard the motion of the faster layers. .IgN
is found by experiment that the force of viscosity is directly
plmmtmnal to the common arca 4 of the two layers and to the
gradiont of the veloeity normal to the flow, If the ﬂmdqs mov-
ing in the z-y plane with speed », then the viscous fQI“Céz:]S

40
F= 'n./:l @ m\
& \':

ginee % 15 the gradient of the speed normﬂ\ﬁ«e the direction of flow.

7 1% called the coeflicient of ubwsﬂ;yu,,
We shall let P;; be the stress, tehsor and oy the strain tensor

fur the fluid analogous to tu aj’l& ¢ of the previous paragraphs.

We have X
AN E (au &u)
ii?* 50+ o) \oy 3z
where u, », w aré\the components of the veloeity vector v .(sec
Sec. 112).  Ed’a fluid moving in the y direction with a gradient

\/ o
in the x dir:’e\:tion, we have u = ( and @ = (), so that
P £ av _ 61}
:.,\', 1z — 2(1 __|__ O’) Az ax

\
3

]Ie (M) 'he ‘t, -
n

In addition to the stress components duc to viscosity, we must
add the stress components due to the pressure field, which we

assume {o be

must he replaced by 7.

- 0 0‘
0 —p (
| o —p[
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The equutions of (457} become
Py = 2oy + Mowr +- o0y +- T33)8y; ~ piy, {463)
where ) is undetermined asg yet. Now let 5 = 7 and sum on J.

We see thut
Py + Py +P33 = (2?'.' - 3)\)(0'11 -+ Tz + 033) - 3;3_0

O\
We know that P, + Poy + Pay is an invariant und Lliak Tor the

static case Py + Py, + Py = —3p. Consequently ,v-{&\"cl’loose
27+ 3\ = 0, so that {463) becomes \
N
Dy = Py = Znoi — Fn(e + o322 + Tagi A5

£y (464)

v/

for small velocitics, Moreover, the veloeltydetor 1z given by

V=i 4 wj + 1{,&\.}

1{ow;, ou e ) .
and Fif = — (—"—. + __J'), B0 that dumr =V ey = aiy '1_'— Fru o Ty
2\ax  ap  \D
To obtain the equations of motion, we note that {ren {447)
.'\’.:; L= &
dpis ¢ d
fi = ;z‘:* + —'p—f —}%3 where g2 = y
N\ dx ax o=
NS s
KL ) 22
\ A dxd
£ ) F=1
£74 ” ]
N4
. W APy
and in genegal'f; — E 24, Hence
& = gk
) i=1
O Fi - f, = du;
R 2 Ji=p o
h&somes
O " ops d '
/ oy - E P (465)
= 0 di

where F; i3 the external force per unit mass,  From (464)

Opy do; 2 adivy F

-2 29— ‘—n“L—,—) & — _p 8i;

axi axf 3 ax’ az7
a4 fdu; gy, 2 9v-v ey
42 Nzl gy 3 gl di?
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and

3 3
\ dpu _ E_a_(?ffi_g_@i)_g &V.v) _p
& o ~ dzf \ow' ot 37 e o

The zquations of motion (465) are

(_E_i du; Uy 2 HV-v) dp
? = et E (c'}z’ + 6x) T3 e oz (466N

N s

T £
o ¢ \A

dv ~\
P = pf + 5 V¥ ~ —V(V v) — V;D AN (467)

‘.,\\
T'or an incompressible fluld V- v = 0, and \/
o b <
v .
dﬁ 7 \ r

Along with (467) we have the quatibn of continuity

dp N .
= h¥- =0
o TV (7

¢\ Problems
i. Derive (467) from (466).
2. Consider thodsteady flow of an incompressible fluid through
a stall cwlindriéal tube of radius @ in a nonexternal field. Let

8
v =k dnd show that p = p(e) and n V% = —f Show that the

boun.dch‘v conditions are » = 0 when r =a, and v = u(r),

m{ff x* 4 »* and that g—: = gd_f-( ;I:) Hence show that

. dp
= (A/49)(r* — a?), where A is a constant and ol A,
3. Consider a sphere moving with constant velocity #ok (along
the z axis) in an infinite mass of incompressible fluid. Choose
the center of the sphere as the origin of our coordinate system.

av
Show that the equation of motion is s il Vv — Vpand that

the boundary conditions arev = Oforr = ,v = —vkatr = =,
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d . .
and that for steady motion ;3% = 0 for any quantity associated

with the motion. Moreover v .v = 0. We shall assume that v
and the partial derivatives of v arc small. Show that this implies

() Vp = n v

Ience prove that Vip = 0. Nowletv = —Ve + widk and shﬁ({w
that \

i duw; & t\t\
(i) E = Vip \)\ ‘.

Assuming p = —9 V% and V2, = 0, show t-'hait‘”{ﬁ) and (ii)
will be satisfied, ‘&

A\
Lot wy = 3vga/2r, p = ¢pz — (voadz/473) —{-‘(3%&2:/4?‘),

Bnveaz xj\\"

Dpd \‘
and show that O
Vioy = 0, Vzp,‘%’?g"; p= V%
v = —-Vgo—{-“ah =0forr = ¢
V= —vkfopr = oo

4. Solve for the st.ea‘(;l} motion of an ineompressible viscous
fluid between two pi@rél]el plates, one of the plates fixed, the
other moving at; a%onst-a.nt velocity, the distance between the
plates remating etnstant.

5. Find the ﬁt’eady motion of an incompressiblc, viscous fluid
surrounditigs: sphere rotating about a diameter with constant
a-ngula@efocity. No external foreos exist,

W\



CHAPTER 8
TENSOR ANALYSIS AND RI]E‘\/IANNIAN GEOMETRY

113. Summation Notation. Wa sl‘%all be interested in suma,

of the type \
S = ag + @y - - -\f— Gnln (468)
N\
We can shorten the writing of (468) and w%ﬁ@e AT
n 5 '\\
8= ) ax O (469)
F=1

Now it will be much more convenient t{‘(’é\pdlstw the subscripts
of the quantitics z1, 4, . . . ,z. by supetseripts, o1, 2%, . . ., 2"
The superscripts do not stand for powers but are labels that
allow us to distinguish between t‘l{e:’various #’s.  Our sum S now
beecoines \y

N\
“QS‘ = -21 aixt (470)
{...t\ i=

/

We can get rid pN- e summation sign and write

< — (471)

8 = aat

n-hera;ih\c repeated index 7 is to be summed from 1 to n. This
notadién is due to Einstein.
~\Whenever u letter appoars once as a subseript and once as a
\Sdlierscl’ipt-, we shall mean that & summation is to oceur on this
letter, If we are dealing with » dimensions, we shall sum from
1 to n. The index of summation is & dummy index since t}le
final result is independent of the leiter used. We can write
S ='axt = qaf = a.a® = agf.
Erample 111, If = f(z, 2% . . . ,2"), we have from the

calculus
' 259

N\
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[3xc. 120
af . af i
- Y __..d 2 P ' e pfpe
df ax‘dx +ax2 g - P i
n
v .
= —Ji dxt
= gzt
f=1
a
= ﬂf dxe
o
and ! . “
Y af dae \
di  dxe i Ko N

9
.- O .

Example 112, Tet § = FeT0% The Inces 4 Beeurs both ua

& subseripd and supevseript.  Tlence we [jr«i Son «, say from
1t03. This yields '\\,
. N .
o= g,,gxlq;ﬁ —+ gg,g:r:'-’:t:ﬁ —,'— a".

Now each term of § has the repeat-em](!x & summed, say, from
1i03. Hence }\\ '

8= gzt + tgeeie? 9133;33,:3',# g2’ gt
N 4 gaatel A g,

TR Y

and § = g gza,8 represents the double sum

I'_ gwxﬂxS
it - grarted

& 53
N8 = Z Z Gagr®eh
) '\\./ f=1ca=1
We also no’qisg}-hat the gag can be thought of .s elements of a
square matrix’
X | ,
:.,;..} ‘-911 f12 s
\V ‘!}'21 Fo2  Gaz
" (31 Gas goa i

O\
.\‘35%20. The Kronecker Deltas. We define the Wronecker 6;: to
~\\J be equal to erg if ; = f

7 and to equal one if = Ji

) —_
§=0,i5; (472)
1,i=j
_ 7
We notige that G=8= ... =8 =1,
i DR
= b st e,
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If 2, 2% . . ., 2" are » independent varigbles, then % = 8,
. iz

3

A cp e s .
forit 7 = 4, Pl 1, and if ¢ 7 j, there is no change in the vari-
able 2* if we change 27 since they are independent variables, so
a5t
that — = 0,
a?
a8 dxe

FEyample 113, Let S = *, Then — = a, — A ¢
wampie 113 [ en Py 7} o and O\
NS
o8 5 A\ ™
T N
dak ¥ e\
R
Now 85 = 0 except when o = g, so that on'summing on « we
Il )
obtain %—) = @, N
:t: ¢*C
Erample 114, Let S = aapra® = Of&' all values of the vari-
ables !, z% ..., z*. We show.that a; + as = 0. First
differentiate S with respect to zhand obtain
28 o e
—_— = AN af T =0
o B ey ta P oxt

:—“&"Eh\x x“ﬁf + a’uﬂagxﬂ = 0

X du® + apa® =0
Now diffcrenfc-'@]t}e"’;vith respect to z’ so that

x\
WV 0%3

T g gt =0
\\’ ozt dx* ! /

O ' ay + a5 =0

We define the generalized Kronecker delta i i as follows:
The superseripts and subseripts can have any value from 1 to n.
If at least two superscripts or at least two subscripts have the
saume value, or if the subscripts are not the same_set of numbers
as the superseripts, then we define the genera.hzec.[ Kronecker
delta to be zero. If all the superseripts and subscripts are sep-
arately distinct, and the subscripts are the same set of numbers
as the superseripts, the delta has the value of +1, or -1, accord-
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ing to whether it requires an even or odd number of Permutations
to arrange the superscripts in the same order as the subscripts.
12 123 173
For example, 6123 = 1, 528 = =1 85 =1, 81 = g,
122 128 . c3lg 1zr
‘5;222 = 1; 5123 = 5221 = gy = 0 5«.@: =10

It is convenient to define

ffe "7 TR ™ o
etz tn ae 5‘112‘ i . I\
and : o~ 73)
: 12 23
fill'z ey T 3?-1!: R :"\: \“u
N/
Problems \

L Write in full aiz= < b, o, ; ~ 1,238

2, If qugyronfyy = 0, show that Gyx + g5 5} e = 0,
3. Show that 85t ‘"531]?2 e = Ot

4 Iy = alze o = piya show thats%@'— blagy

5. Prove that \‘

Bamﬂ = &'f'& _s_ o7
arst aaﬁy — arac + atrs + aﬁr — gt . atxr art.«

=21

. Show that the determmant

1
l
2z 3
%1 Gy |

A N1
M| oy, . i
(J:\a%\ ag[ = e”aiag- = 6560105

and that N
o ai al
AS o
OTel o g2 = Haiaial = epaiaia
92 3z 3
O° ay ai af

( rove that ¢, . i, = gl

d0x 00 B
38, Show that 528 0= _ Opi gy

~O P
N O Ity = y‘(xlm2,”,xn)’3-=12 . ., m, show that
dy*
%= 6:"‘ ay assuming the existence of the derivatives. Also
Iy 4 .
show that ——- . 92 o7 88 = 8. Show that
dzxx gy P

623;‘ dz= dz# 3y 623:"
2= a2 daf ayf ay dxe éU’ éy
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10. It ¢ = ozt 22, . . . , zv),
A U L R ()
i=1,2,...,n andif
=oyh v - ..y =t y), ), . .., ()]
p  de 0t By
show Lthat @ = @’:6? Given o, = Py show that
dp: 97 {de. B3\ da= 37 O
o oy \af  aze) oyt oy O
121. Determinants. We define the determinamt, o} by the
cquation ~
1 1 1 ’
&1 g " Gy \
A R BN
| = AN _,
! ki i 0103 Oy
@ oa NN
Ia;| E."éflii’.:‘s,,a;a?z s, (474}
S

The reader sghoul i;ibfe that this. definition agrees with the
definition for thé\gpecial case of second- and third-order deter-
minants whigh’he has encountered in elementary algebra. The
definition ef\a’ determinant as given by (474) shows that it con-
sists of £'stm of terms, #* in number. Of these, n! are, in gen-
eral, different from zero. Each term consists of a product of
elements, one element from each row and column, The sign
~80the term alaZal + - - af depends on whether it takes an even

\or odd permutation to regroup gz -+ * * 4 into 12 ¢ - - n.
Since 4; and %2 are dummy indices, we ¢an interchange them

g0 that o _

] = 4,000 < 0 AR S e agla Al

An interchange of the subscripts 1 and 2, hc_wr'ever, wlill mean
that an extra permutation will be needed on 3.21': iis * t dne This
changes the sign of the determinant. Hence 1nte1:chang1ng two
columns (or rows) changes the sign of the determinant. As an
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immediate corollary, we have |ai| =
are identical.
Let us now examine the sum

o Tows (or columns)

i = Gl - (475)
I 1, 72, - . ., Jn take on the values 1, 2, + 7, Tespee tively,
we know that (475) reduces to {474). If the I Z Y,

take on the values 1, 2, . . . , #, but not respeciivaiy, then we
baveinterchanged the rows. An oven permutation reduces (405
to Iaﬂ and an odd permutation of the 7's reduces (475) fo —-]a]
If two of the 7's have the same value, (475) 13 zero, s Jubﬂ\]f two
rows of a determinant are alike it has Zero value, "{encc

PRI ; : * . ,,._.-".".
éihhabalt o aly = ol g Y (476a)
and ¥
e e a0
Eigiy 1,008 af = |afe. 5 (475b)

Kzample 115. We now derive thcxl‘shﬁ' of multipkeation for
fwo determinants of the same orderz’:\We have

N

laft [f] = |a,[emb*b§ - B
= il ot 0

= iz vn(ﬂ b1 ) (akby) (a"b‘ )
= g o0k - -
where PR

\ B\ of = aips : (476)

Erample 116 We now derive an expansion of a deter mma,nt
in termsbf the cofactors of the elements. We have

W© e

R = &, .00y - o
...\n_:' = G‘?L‘(Eijig--‘inaz_ e a’::
m\\: "‘: = a{:
1 _ i : . @
where A, = eu,...008 » < - ar. AL is called the cofactor of ¢f.

In general,

|l = aftene...ciad - - - alrgaie - - ab
= nZAR
= azdg (8 not summed)
Hence

a4l = fof (477)

——
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Alzc
atd; = a8 (477a)

Fzample 117. Let us consider the » linear equations
yo=dlas, e,i=1,2 ...,n (478)
Multiplying by A%, we obtain
Aly = alafae

5o that summing on ¢, we have from (477) \\‘>
Aty =l =l O\
If |a| # 0, then ' \:m:\g,"
B i i N
o ﬁaglj _ Y (cofactor|;>!f aﬁirj |a[? @79)

Fxample 118. Letyt = oi(a!, »° , x"),z =12 ...,n

3

In the caleulus it is shown that 1f g* # 0 at a point P and if the

N

partial derivatives are conMnuous, we can solve for the 2* in
terms of the y's, that 1s,\a:‘ = 2yl ¥% . - - , ") in a neighbor-
hood of P.

Now we have 1dﬁe\h¢1‘cally

\< ORI
I
"\‘
Formi@;’ﬂle determinant of both sides,
\;;. ;
\ & =

O~
from (476). Hence

ay c'i:z:"‘
ox® éiy’

ay az
ax |dy

_lew e
T oz

59

- The determinant QE‘] is called the Jacobian of the y's with respect
dxr

to the z’s. We have shown that
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1 2 ... " _.31 T2 e i

J (?;/!1! y2! r y ) J Ql, 2! 2 ) — 1 (480)
P 2 Y05 - oo,

Ezample 119, If the elemonts of the determinant || are fune-

tions of the variables et ..,z we leave 1t to the student
to prove that

6{&‘ dab 2
ol P {
Az B gan a (181)
. A\
ay s W
As a special case, suppose af = P here 3 = y‘g};mz, c e, 2,
3t 3
. By .xe o L
Now & = ﬁ:’z %; Let us consider jto b.&flx}?c\f for the moment,
LetY‘—‘—y,—a,,X— :botheﬁx‘?—-aX‘* If
axt ay’ AV
N\
e
== 0
. Iﬁl RN '33?’[?5
then N
X. Y“(cofactor of af in |al)
£ RAVLOt Of ag 1n [a|)

C 2S Il
from (479), or \\

0 e . 63/)
) & | eofac ~—in {-Z
’ ,\ oz 3; (c_o actor of PRl P
\’ =
A\ oy dy
“;ﬂ\ dz ,
RN i
& N (cofactor of = % y)
J f’h:ﬁ dx
oz,
and so
;
(cofactor of % n @) % 6:63
oz T ar dx ay?

Applying this to (481}, we have
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N
o _ oy dz=_ayp
il ox| dyS Azt dxm
or
(482)
& log [
® oz gz o%yf
dxF ayP Iz due 2\
L\

We ghall make use of this result later,
L ayl N
Example 120, Let o = ¢i(zh 2% ... ,2%), I;;Qé 0. We
wish to prove that m\'\:"
N Y
9%n dz= 92f 3¢ Ay

oy dyl - -@ ay* ayifhc;’ dxe

Now 5;'- = 9 a—x,: g0 that upon,diﬁe}ent-iating with respect to
dz* dy R
#®, we obtain RN '

a a%e |z oW

= —mw—t T 483
63:\"\&3:" Ay + i 3P dx= oyt (483)

s\
o ar* . ,
Multiplying bqthx\fdes of (483) by a_y‘- and summing on ¢, we

obtain \)
x gl 248
PR7 G % ? aaﬁ?:; QED.
L 3 F 7 L frad
§ oyt oyl | oy y* Ay
&N , d%e (d:c)“ &y
\M\iai&}.%*a special eage, if ¥ = f(&), dﬁyz = ~\g/ @
i Problems
ai a3 @
1. What is the cofactor of each term of | ai a3 al|?
3 3 3
ay g 4

2. Prove (481), (477). .
3. If |4] is the derminant of the cofactors of the determinant

|a|, show that 4| = |a|*
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4. If &} = o, show that A = Al Tg laf = |2]] in all cases?
. ) ige
5. Find an expression for W oy o |
6. If #i = z"(y‘, y"‘, ey Lf"), y‘. = yi(xl.! .‘32, AR 'T'ﬂjr ShOW
that J&/J (y/x) = J(z/z).
dz* Iz lg i
7 1 i = gus — = show that || = la] [
oF gz |r3‘.',r_?} ~N
. oF dz= '
8 If g = ye o % = v, Fre show that @+, — chs{%{\where
= Fate? L ). O
. I . dat
9. If gf = e 22, show that i = ge *%— SN\
dze oz '\w’\’
. dz® dxd _ NOBE gy
10, If gi; < Gog EET ﬁ_ff} show that Fii —; ?Qﬂ 5{:_‘ ;r;
9 ax a3 R &
H. If @ = 4 opr B = P s]:}o\:q‘that o= g o

12. Apply (476) for the prod;léﬁ of two third-order determi-
nants. ~ \Y
o 08 Byt W ; ;
13. If 4} = Bsa—g;; ;x;,‘;l?ng_that A; = B}, and that |4] = [B],
AiAl = BiBI,

14 It X ig g root, of the eguation 'a,rj — Myl = 0, show that A

. \ - a,'ar (‘)xﬂ
18 also a root of ﬁ},}- - )\bﬁ-[ = 0 provided that iz = (o —f—. pyrl
g ... ax& 61“!
- 9x%8%8 oz
b = bop S8, 197
L e oy <0

12%\34}1thmeﬁc, or Vector, n-space. In the vector analysis
Stt{d?-e\d n the Previous Chapﬁel‘s, we set up a coordinate system
}'fitli’three independent variables z, Y, 2. We chose three mutu-
“ally perpendicular vectors i, j, k, and all other vectors could be
Written as g linegr combination of these three vectors, Any
veetor could have been represented by the number triple (z, v, 2),
where we imply that @, 9, 2) = zi - ¥j 4 zk. The unit vectors
could have heen represented by (1, 0,0), (0, 1, 0), and (0,0, I).
A system of mathematicg could have heen derived golely by
defining relationships and operations for these triplets, and we
need never haye introduced geometrieal picture of a vector.
For example, two triplets (g, b, ¢), (a, 8, v) are defined to be equal

Y
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ifandoalyif o = o, b = 8, ¢ = v. We define the sealar product
as (o, b, e)(e, 8, v} = ax + b8 + ¢y. The vector product, dif-
fereutialion, ete., can easily be defined. Addition of triples is
defincd by (o, b, ) + (o, 8, v =@+ a,b+8c+ ) If A
15 a real number, then A(g, b, ¢} is defined as (Ad, 4b, 4¢). The
set of all triples obeying the rules

O @hot@BM=Gtabthetn) e
(ii) Ala, b, ¢) = (da, Ab, Ae)

i3 called a three-dimensional vector space, or the arithmetic spat,
ol three dimengions. o\

Ii i casy to generalize all this to obtain the arithmetic n-space.
Tlements of this space are of the form (2!, % . . . ,~,f“);"the z
taken as real. In particalar, the uvnit or basigl vectors are
(1,0,0, . ..,0), (0,1,0,...,0,..., B8 ...,01).
We shall designate V, ag the arithmetic n-space

By a space of n dimensions we mean a ‘&et of objects which
can be put in one-to-onc reciprocal‘cdi‘respondence with the
avithmetic n-space. We call the corredpondence a coordinate
system.  The one-fo-one correspm;u’dence between the elements
or points of the n-space and thé:a:fi‘t-hmctic n-space can be chosen
in many ways, and, in generaly the choice depends on the nature
of the physical problem W{{iich determines or sets up the desired
coordinate system. , L)

Liet the point B c}m}cspond to the n-tuple (=4, 2% ..., 2"

We now consider fhe » equations
(7

GEZ i e, L), i=12 .., n (485)

W

and @S{}l}ne that we can solve for the 2, so that

O wmwhn .y T L2 (489

‘We agsume (485) and (486) are gingle-valued. It is at once
obvious that the point P ean be put into correspondence 'w1t-h
the n-tuple (¢4, %% . . .,y"). The n-space of which P I8 an
element is algo in one-lo-one correspondence with the set of
(1%, 4%, . .. ,y"), so that we have a new coordinate system.
The point P has not changed, but we have a mew method for
attaching numbers to the points. We call (485) a transforma-

tion of coordinates.
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123. Contravariant Vectors, We consider the arithmetio
n-space and define a space curve in this ¥, by

¢t = zi(g), z'-——-1,2,...,n

e=1=<8 {487)

Note the immediate generalization from the Space curve r = g(f);
¥ =y{0), 2= z(t): In our new notation x = xt 5 — T 2 = g3
de dy dz \
We remember that —, 2¥, % are the components of atahgent
dt dt” 2 AN
vector to this curve.  Gieneralizing, wo define & tapeent voetor
to the space curve (487) as having the componentgy )

4

It R2s,

?;:i’. I=LAN . ,n  (ss)
Now let us consider an allowsble (one-,f;EP-:;He and single-valyed)
coordinate transformation, of the tyRe 1485). We Immediately
‘have that NN

V=gl e, L ) = WO, 20, . . ., 0] = ¥
as the equation of our gpii,éé curve for observers using the y
coordinate system. The components of g tangent vector to the
Same space curve (refedmber the points of the curve have not
_ changed; only the\l'ébéls attached to these points have changed)
é are given by

&~ 2, i=1,2 ... n (489

~f\'". " dt
N\
Certdinly the 2 coordinate system is no mo ¢ important than
‘{@-ﬂ ystem is no m re imp

they toordinate system. We cannot say that L—% is the tangent
\" [#3

\" dui
N\ vector any more than we ean say —&% is the tangent vector. If

we considered gi] allowable coordinate transformations, we would
obtain the whole class of tangent elements,
to be the tangent vector for that particular coordinate syslem.
It is the abstract collection of alf these elements that is said to
be the tangent vector, We now ask what relationship exists
between the tOmponents of the tan gent vector in the x cocrdinate
system and the ¢omponents of the tangent vector in the y coordi-
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nate gyatem. We can easily answer this question, for

dyr &y dx=
di ozt di (490)

. ot axt dye .
YW also notice that _ We leave it as an exercise
dt oy* di )
thal this result follows from (490} as well as from (486). N\

Ve now make the following generalization: Any set of numbers

Afx', 22, ... ,39,4=1,2 ..., n which transform aceord-

o~
2 Y

7
<

— m' 4 3%
A3 L .., 2) = A 2 X0 = (o)

[

under the coordinate transformatipo\# = F{(z!, 2% ..., 2%,

are sald to be the components of W eonTravariant vector. Lhe
voctor is not just the set of components in one coordinate system
but is rather the abstract qu’;i.iltity which is represented in each
coordinatc system z by théset of components A¥(z).

We immediately see that the law of transformation for a

contravariant vect?r\is transitive. Let

\" =i =
\_ fi ol =, - 0z
\ [ [ i= A% —
O A A AT
Then )
N\ - _AE aEP IT T
L 3 i = 8. — - — = Aa —
§ Ai=4 3%° 4 dze IEP dz*

K Shich proves our statement. .

\ V™ If the components of a contravariant vector are knpwn in one
coordinate system, then the components are known_ in all other
allowahle coordinate systems by (491). A coordinate trans-
formation does not give a new vector; it merely changes the
components of the same vector. We thus say that a con.t-ra-
variant vector is an invariant under & coordinate transt orn:.w.tlon.
An objeet of any sort which is not changed by transformations of
coordinates is called an invariant.

Ezample 121. Let X, ¥, Z be the components of a contra-
variant vector in a Euclidean space, for an orthogonal coordinate
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system, and let g2z = dx? 4 dyt | dz%  The tomponenty of thig
vector in a polar coordinate system arc '

o a 9 ,
R:X-—?-'-}- Y——r+Z-—r=r:056.Y-+ CILTIN

dz dy dz

G ag 9  ~sing rus g
=X~ 4 p% Z—~=——————_-\’-+--'——— .

dx + dy + dz ) 7 N

d a a 'S
Z=XSyyP, o O

dx dy oz '\

Ny

N 3
N

where r = (x4 vt g = tan—t W/2), 2 = 2. ‘

The components £, 0, 7 are not the profedtions of the vector
A=Xi4 ¥j + 2k on the r, B, 2 diredidod. However, if the
-component ig given the dimensir_ms't;(gl length (o multiplying
by r, we obtain 07 = _ $in § X 4 e Y, whick is the projec-
tion of A jpn the 6-directiog ’ﬁ-"e“multjplief.l by 5 because r dg
is arc length along the ﬁ-curve.ﬁ:'}"ﬁ, 0, Z arve il vecior con-
Ponents of the veptor A in thelyig., coordinare system, whereas
£, 70, Z are the Physical COMponents of the samo vector,

O\ Problems

L1t Af("c)’ Bia)are Compaonentg of twWo contravariant voe-

tors, show thap }gﬁ(x) = Ax) Bi(z) transforms necording to the
- \dFE as
law (i =:Gf\iﬁ gf; (?f; where (v = Jig:

2 Skﬁ?s“tha’t if the tomponents of g coniravarisnt veetor
van’iséﬁm ne coordinate System, they vanish in all coordinate
8y bt ghis, Wha can be said of twq tontravariant vectors whose

.Eﬁmponents are equal in ope coordingte s¥ystemn ¥
“\ 3. Show that the Sum and differcnce of two eontravariant

LIX vy 7 are the componen g of & contravariant veetor in
an orthogong] coordinate System, find the tomponents in a spher-
ical coordinate Systemm. Ry what must the g and ¢ components

be muliiplied g, that we can obtain the Projections of tho vector
on the - 4nq qc»directions?

- - T i
A Ch L that A¢ = g 92°
dx= aF=
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_ :
fi. Heferring to Prob. 1, show that (¥ = Q=8 o' a_“"f
%= azf
_ gel® - GFt laziv i
71 A= 2 A= L, show that 4% = [ A« 2.
dze o] © oz
124, Covariant Vectors, We consider the scalar peint fune-
fion o = (!, 2% . . ., 2%), and farm the n-tuple
dg & E
(—"; o, "°) (492)
dzl gz’ ax" O\
NS
Now under a coordinate transformation A
L AT )
. dyt  ox® Jy v
3 \}v d¢
g0 that the elements of the n-tuple (ﬁ,\a_y? <o ,@) are

O\Y B
related to the elements of (492) by;.“(493). We say that the e
arc ibe components of a covari;;ftf‘véct-or, called the gradient of ¢.
More generally, if \

...< ’ Axe
RS T -2 494
(OTd- a5 (494)

the A; are sad }c;f be the components of & covariant vector. The
remarks of @ed, 123 apply here. What is the difference between
a c.ont.rmi;t\.rizint and s covariant vector? It is the law. of trans-
formation! The reader is asked to compare (40%) with (401).
We&ﬁight ask why it was that no such distinction was made in
\"Triée’:elementary vector analysis. We shall answer this question

ih o later paragraph. )
195. Scalar Product of Two Vectors. Let Ai{z) and Bix)

be the components of & contravariant and a covaria:nt vector.
We form the scalar A°B,. What s the form of A%B, if we make
a coordinate transformation?

Now
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s0 that

Hence A<B, is a scalar
formation,
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. o dx* ar”
eB, = AL, — —
AB, AEB 3T o
A 6.::“
2By = APB,
A 6:2:5
= AﬁBuﬁﬁ o
= A“ﬁﬁ'e == Apra

N\
mvariant under a coordinats, tra,ns—
The product {(A=B.) is called the fs-:-ah,r, ot dot,

product, or inner produet, of the two vectors. \ O

1. If A; and B; are components of ’mo covaiiant voctors, show
dz* 9z
¥ 9z 63'}’
AB; transforms according to the law

that Oy = A:B;transforms accordmg «1’\()\\16 law Gy = Cas

2, Show that C} =

o
N

Problems ‘ “\ 4

- a8 ax $
¢ = cg oL 25, Ry
aF dxe v
3. HA = il

A — show that A= 4,
5‘32

4, Tf ¢ and &\ﬁ\re sca.lar invariagnts, show that

m\l.

“grad (e¥) = o grad ¢ + ¢ grad ¢
grad [Fle)] = F'{g) grad ¢

5%}9:44"3; is & scalar invariant for all contravariant vectors
A% show that B; is a covariant vector.

£NY 196. Tensors.
tengora,

the integers 1, 2,

ing to the rule ,

12y « o e ar
b ve-ba

oz

gz A - - e i Ol.?"" dxh o

o v SR

The contravariant and covartant vectors
‘defined above are special cases of differential invariznts called
The components of the tensor are of the form Thg.. &
where the indices ay, ag, . . . , ay, by, be, . . . , b, run through
. » 1, and the components transform accard-

(495)
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We eall the exponent N of the Jacobian g—fl the weight of the
: z

tensor field. If ¥ = 0, we say that the tensor field is absolute;
otherwise the tensor field is relative of weight N. A tensor
density occurs for N = 1. The vectors of Sees. 123 and 124 are
abrolute tensorvs of order 1. The tensor of (495} is said to be
conlravariant of order r and covariant of order s. If s = 0, the
tensor is purely contravariani, and if » = 0, purely covariant, <
otherwisc it is called a mixed tensor. . A
Two tensors are said to be of the same kind if the tensop s\hme
the same number of covariant indices and the same number of
contravariant indices and are of the same weight. We %an con-

gtruct further tensors ag follows: '\\
(@) The sum of two tensors of the same kindJs.a tensor of this
kind. The proof is obvious, for if A
foos _ 07 paea 07 a_%f‘\ﬁa L2
ced T ag T ez O070 9 azh
o o‘,”; r b
o O] g gt N oo
=d T gz " @7 a7 oz o
then y,
— dzl¥ dxe ar
T R % g L. L0 —
[’c' = (T \\{"‘L‘ S ) Uﬂ' T 3zl oz Axf

{t) The product of two tensors is a tensor. We show this
for a spema{case Let

\& o 6:c 92 43°
A‘\\”" If — B afb axa
Z”\.: :' . S_ 313 i 9.?
" oF axT
80 that
ax\s oy 07 02° OF
(738 = |57 (T5%) s g e

The new tensor is of weight N + N/ =3+ 2= 5.
(¢) Contraction. Consider the absolute tensor

_ s ozf Bx‘f (‘Jx‘
b1 op o7 2%

A
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Replace k by ¢ and sum. We obtaip

- dxf v ag
Ap =45, — =
OF gt gge
« Eﬂiﬁ QJ_‘? — o af_ﬂ 5
By oy =
OF gz
o Oxf 2\
= Aﬁa T
OF A o
(\)
50 that 4% are the componenis of an absoluI;e{;f}nnt-ra.variant
vector. In general, we equate 5 certain COVaRint index to o
contravariang, index, sura on the repeated, Ancices, and obtain
& new tensor.  We call thig Process a conmineiiog,

() Quotient low. We lusirate the quBtient Liw ag follows:
Assume that A*By; is a tensop for aLl\\cbntmx-'ar.i;mt vegtors A7
We prove that Biisa tensor, for R

: X

. NS 638 o g
ABy = gap, 70X O
A 05 a5 =

N 4 0xf dav

8= 488y, — 2

LA IE gk

or "\\

&, 5 98 G _

\ \ A (B_?L B.Bv SF Sk =0

Frf G

9797, (b desired

. . A *
Singe A & arbitrary, wo must have B, = B, — -
g\ o Gk

Fl
) o~ &
resulg )

Zrample 122, Tpe Kronecker delta, 3, is a mixed absolute
'\téﬂsor, for

.\ N/ : dxd azs, Oz Ax8 s
N Y e g™ i = 8 = 38
AT Jgis dEx gy

Erample 123, If A and B, are the components of & contra-
variant and a govariag veetor, then (% = A'B; are the com-
ponents of a mixeq tensor, for

- o _ 828
At = ga ZF . kel
o< Di=Bs %
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s0 that
5 9Tt axﬂ e oF B:ﬁ”

(i = AB; = A*Bs — g —
3z 0% aze axd

Fremple 124, Let gy be the components of a covariant tensor
dae dxf . . .
g0 that Ju = fus =0 i_ Taking determinants and applying
T 6F )
Example 115 twice, we obtain QO

WA

or |g|’ o [

gl =

i

<

Now if Ab are the components of an absolute cortravariant vee-

w

- o
tor, then A? = A= a—xa: so that ) \\,
azs
i — |al3 s iA
B = |4 J M pyes
ax ;:Li:
T lgEfs dxe

g0 that B = |g|*A¢ are }he components of a vector density. This
method affords a ﬁg\bans of changing absolute tensors into relative

tensors. ' . '
Example; 125, Assume gop dz* d2? an invariant, that is,

x:\u'
\"\, Jog AE% dTF = Qap dz= dxf
N\
'.\ it
Néw dz= = —;; dx*, go that
O T
\ }” n o7l
fop o oF* 4T 0T 1o dx? = G dor dx?
ax* aa:'
or
(g- L= z_ﬁ - gn,) dor da? = (496)
gz oz

then since (496) is identically zero for

If we assume gas = Yo
€ Jag Ghias p]e 114)

arbitrary daf, we must have (see Exam
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-
T
Gur = Gas Ar+ dz»
—_

(496a)

or the g,, are components of & covariant tensor of rank 2.
Ezample 126, If the components of 4 tensor ave zero in one
coordinate system, it follows from the law of trans{ormation
(495) that the components are gero in aj coordinate sygtems,
This is an important result, R
Ezample 127, Outer product of two vectors. Lei, 40 amd B; be
the components of #wo covariant vectors, so that O

The C; are the componerts of & covapigut tensor of gecond order,
the outer product of A; and B, AW

Ezample 128, By the Same Téasoning us in Tixample 127, we
have that (1, = AB; — A.B, g.ré"the components of & covariant
tensor of the second order, Notice that Ci s skex‘t-'~symmet-r‘ic,

for ¢y = ~Cu Fora th¥ee-dimensions] space
i 0 \4’ ABy ~ AuB,  AB, — AR |
lead =} ~ (4B, © 4,8, 0 AyBy — AqB.
—(AaBh~ 4;B)) —(4:B; — 4,B,) 0 !

) S

The nonvagishing termg are similar to the componcents of the
veetor ¢tess product.
N\

O Problemsg
N dz> 9z8 Y
1 If Aﬁ‘ = A—a - P —
: S 5% a5 show that 4, Aag 32 9

2. Show that Ay ean be written as the sum of a symmetric
and g skevf-symmetric COmponent,

3. If A% are the omponents of an absolute mixed tensor, show
that A? is 4 sealay invarigng,

4, If Aqg are the components of an absolute covariant tensor,
and if AeBds, = 85, show that the A are the components of an
absolute contravariant tensor. Tho two tensorg are said to be
reciprocal,
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5. If A% and Ay are reciprocal symmetric tensors, and if w;
arc components of a covariant vector, show that A,aduf = Avua,
wheve 1} = Al*y,.

6. Let Ay and Bi; be symmetric tensors and let +, #* be com-
ponents of contravariant vectors satisfying

(Ay — Bt =0 4§=1,2,...,n
(Ay — «'Byjvt = 0, k&«
» . At
Prove that Ajuw’ = Byui? = 0, and that x = Wy Why is ;\

B,'{U.iia'.j \
an invariant? (N

7. From the relative tensor A; of weight N, derive awelatlve
scalar of weight N. N

8. If A% is a mixed tensor of weight N, shcqaihat A™ 35 a
mixed tensor of weight V.

9. Show that the cofactors of the deKZrmmant lay| are the
components of a relative tensor of welghb if ay; is an absolute

covariant tensor.
10 If A are the cumponents of an absolute contravariant

vector, show that -i are 7ok, B]le components of a mixed tensor.
127. The Line Eaiement v In the EBuclidean space of three
dimensions we have a{sumed that
\\ st = da? + dy? + 4
In the Euchdean n-space we have
Ods? = @dz)? + @e)?+ - T (dz)?

\

:"\"“ = ﬁa,g d:t:“ dﬁ‘?ﬁ (497)

It W’ta\apply s transformation of coordinates

A @ F P

we have that daf = %fi dz=, so that (497) takes the form
xﬂ

dxe 9zf
aze T

ds? ,s.‘,,Jg = dr+ dz’

We may write ds® = Ju da‘:ﬁ d:E », where
dxe 97F o dxe dx®

Jur = 0ub Gzu e vy 0FF 0T
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Thus the most general form for the line element (ds)? for g
Euclidean space is the quadratic form

ds? = g dz= dxf {498)

The gag are the components of the metric tensor (sec Example
125). The quadratic differential form (498) i: called a Rie
mannian metric.  Any space characterized by sueh a metrie is
called a Riemannian space. It does not follow that therefexsts -
a coordinate fransformation which reduces (408) to_a mum of
squares. If there is a coordinate transformation \ \)

= xi(yls yz: L yn) ("}'«, -
guch that ds? = 8,5 dy= dif, we say that thg,{iiém&nnian gpace is
Euclidean. The g’s will be called the comnpenents of a Buclidean
coordinate system, Notice that g.g =g Auy coordinate sys-

tem for which the gy are constants .'.gés}led a cartesian coordinate
system. )

v

We can choose the metric yen:sor symmetric, for
gs = bgh¥ ¢n) + g — g0

and the terms ¥(g; = :f,f,-é) dr' do contribute nothing to the sumn
ds®. The terms %(g; -+ @i} are symmetric in £ and 7.

Ezample 1 9§§In a three-dimensional Euciidean space
ds® = (dz')*- ¥dz?)? + (d2%)? for an orthogonal coordinate sys-
tem, so th\w@ "

O 100
I
N "g” =10 1 0
ul 006 1
O ¥ = 73in § cog p = y' sin y? cos ¥°
#* = rsin §sin ¢ = y* sin y? sin ¥*
®? = 1005 § = y cos y?
Now
. dx= oxf
Fii(r, 0, ©) = gag é‘;a;

_ gz 3x® ox?  oArt ax?

Ty Tap oy ey av
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Henoe
gu = (sin ¥* cos %) + (sin y* sin ®)* + (cos y*)*
i

il

Similarly
oo = (YM)5 Jzz = (y\)%(zn yH? Gy=0 foris=j

go thut

ds = (dy)* + ! + ' sin gy
= dr? -+ 72 d6% + r? sin? 8 de? <e.Y
. . - - :.\ '
is the line element in spherical coordinates. Since, _the“g’s are

not constants, a spherical coordinate system is nob aleartesian
ceordinate system. R

Frzomple 130. We define ¢ as the reciproeal tensor to gy,
that is, gi@ge; = & (see Prob. 4 Sec. 126), ~Fhe g are the signed
minors of the gy divided by the de;’pé\fm_lnant of the gy For
splierical coordinates in a EuclideahSpace

Ne/

A\ 10 0
1 0 0 o 1
1 X (T B g — 0
g = ]0 e oY, el =g
0 0 r¥sn?d 1
\ 0 rt gin® 8 %

71
N\’

Exomple 131) We define the length L of a vector A’ in a
Riemannigu &pace by the quadratic form

xt\n
O~ L? = gupA®AP (499)

o
N\ . R

The associated vector of Af is the covariant vector

14.{ = g{a‘q-ﬂ

It is easily seen that At = gifAg, 80 that

L? = gug A A, = g7 A,

We sce that a veetor and its agsociate have the same length.
If L2 = 1, the vector is & unit veetor.

Example 132. Angle between lwo veclors.

unit vectors. We define the cosipe of the an

Let At and B; be
gle between these
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two vectors by

008 6 = AiB: = Aig.Bi = 4 Aipy

= ¢"d;By = giA,B, (500
If the vectors are not unit vectors,
- guA B .
€o8 § = m (BB {(600g)

) y A \.
If g;AiRi = 0, the vectors are orthogonal. We n@s.lgt-\"show that
COs GJ = 1. Consider the vector AA¢ b e .-'\.ng?‘tﬁning 8 posi-
tive definite form, that is, Fap?®2® > 0 unless £4E=Y, we have

Gar(MA® + B4 + 4B g
or w

Y= N(gasd =A%) 4 (g4 BN 1%g.s BB > 0

This is 5 quadratic form in WIITSN 80 that the diseriminant must
be negative, for if it Were nongepative, y would vanish for some
value of A/y or “/A Hences 3%

ga,sA“B‘?:é? EgaﬁAqAﬁ)i(ggsBaBﬂ)é

or |cos 8 <1, LIO}:“e\)ver, A" < kB it s easy to see that
cosf = 11, Q@@Eé )cos o < 1.

Example 133, MA hypersurface in a Riemannian space is given
by #f = i), 1§ we keop u! fixed, 41 = g, we obfain the
SPACC Curwe” xf = Tug, u?), called the 42 curve. Similarly,
= Ix‘:f@","ug) represents a u! cyrye on the surface. "Thesc curves
are \(’éﬂ'd the coordinate turves of the surface. We have at
erlp'c\that on the surfaee

:.&f’o ’ o
@ d5* = gog dya gob - Fos —— —— dut ot

f

i

|
2.
=
S
&

ds? = . oyt dui {501)

where h,; = Gag —— —_
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Example 134,  The special theory of relativity, Let us consider
the one-parameter group of transformations

z =8~V
y=7
2 =3 {502)
t = (f—z')
=7 o N

where § = [1 — (V?#/¢?)|~* and V is the parameter. ¢ s the éﬁee\d
of light. These are the Einstein-Lorentz transformations (see
Prob. 11, See. 24). The transformations form a graupibecause
(1) if we set ¥ =0, we obtain the identity ankformations
x=17,y=742=341=10 (2 the inverse tran§formation exists
since =g+ VD), §=v 2=z [=8B"4 (V/c)a], the
inverse transformation obtained by repla’g‘;ﬁng the parameter ¥
by —V; (3) the result of applying jm}) such transformations
viclds a new Lorentz transformatigm,;fdr if

R Y
A 3

7 = BE- Wi
7=
el

O

N
V4
A%

=+

il

\\‘. ﬁ(f—gﬁ)

where 8 = [4 v} (I'V“/ ¢4, then

x'\.": . r;
\§~>:. T = g(x - U
O y=17
gi;\ 2 =%
~O f. U.
) =351~ 57)
where
- 12 -4
oo YW 5 (1-5)
1+ (VW/eH)

{) represents an event in space

: that {(x, ¥, %
We now assume that (%, ¥ 7) represents the

and time as observed by S and. that (%, ¥, &
same cvent observed by § (see Fig. 101).
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The origin O has § = # = 2 = 0, so that from (502) dj—f = -y
£

H

showing that § moves with a ¢onstant speed -V relative to 8.
Similarly 8 moves with speed -V relative to & '

Yy Y
X Jr
O\
Apiny 54
Biiig
-V C
_ R4
- 8 ]
6"_‘—'——-——-—-_._.,_ .ﬁ’Lf — Y

" Pre, L01.

. RS — ;
_ From (502) we ‘&ge that 0 and O coincide ut / = (. At this
instant assum?}h t an event is the sending forth of a ght wave.
The results of Prob. 11, See. 24 show that

AN

€ and desiring the group property, we could
have shown that the transformationg (502) are the only trans-
formationg which keep gyt T Ayt 4 dar — 2 dt* = (0 go invariant.

b S now eonsider 5 elock fixed in the S frame. We have
¥ = constant, 5o thag g, - 0, and from (802) dt = gdf. Hence
4 unit of time pg observed hy § s 0ot a unit of time as observed
by S because of the factor g 5 1. S remarks that S's elock is
funning slowly,  The game 18 true for clocks fixed in the § frame.
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We choose for the interval of our four-dimensional space the
invariant

ds? = ¢2 Jit — dx? — dy? — dz* = (dz®)? — (da')2 — (dz?)?
' — (dz%)?

whers ' =z, 2? = y, 2* = 2, 2* = ¢f. The interval ds? yields
two iypes of measurements, length and time, but takes care to
distingiish between them. If we keep a clock fixed in the S
frame, then de = dy = dz = 0, so that ds® = ¢?di?, andth
measurement of interval ds is rea.l and proportional to thétime
dt. Now if we keep ¢ fixed, df = 0, and o\

ds* = —(do® + dy* + deh) N
so that ds i3 o pure imaginary, its absolute mluQ &enotmg length
as measured by meter sticks in & Buclideag Space.

We shall describe the laws of physics b\y“tensor equations, the
componcnts of the tensors subject to 't’he transformations {502),
This will guarantee the invariance, 6f our laws of physies.

The momentum of a pa,rtlcle o’ mass me will be defined by

P* = o Cff— If the speed ~0f, the particle is u,
$

o )+ (@ )

as Tneasured by\S, then
ds2 xc2 aft — (dz? + dyt + de®) = (¢* — uh) dF

50 that '\ _
O~ me da 1 o dz=
O PTG a el @/l d
\and

P L E—
PP = /el
We define the Minkowski force by the equations
d dz=
® = p2 —
s ¢ ds (mo ds

__L__E(mdf), w=1234
T u/enta\ db
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The Minkowski force differs from the Newtonian force by the
factor {1 — (u2/c?)] %, The work done by the Newtonian fores

Fe = % (m %m) for a displacement gpe is
> d
dE = 21 % (mi=) dae
us d Q)
et 2] ._?ZE ] o A
= ‘,ZI mE* dre [ g = dy ) ’\“'\.
Mot dy O

Ty

¥ A
?

and Integrating, £ = 1 - (/)] i ez ) ;,t;cz = (m — my)e’,
with B = 0fory = 0. Expanding [1 — (@%/e3)]7 in a Maclaurin
series, we havo B ~ Fmou? for (uﬂ/cﬂ,:{&l.

The reader ig referred to Probs..l;\ 2, and 3 of Sec. 82 for the

Let the reader derive (285) bh uSe of thig theory, choosing th.c
frame § so that a4 a particulaMinstant, the ofy arge p ia fixed in this

frame. The forge op theleharge as measured by S is given by
(285). N

.

~ Problemg

1. For Pazaboloida] eoordinateg

\<& L= 'yt cog 43
AN T = gyl gin y?
oY T = (y1) (97
N

show that ds? — (Y2 + W)y + (@y”)?] + (yy?)2(dy)>
(NY 2 Show that o & bypersurface ip & three-dimensional
3

’»\\ . 1r] .
N/ Euclidean space, hy — 9_{ dar
o O G
3. Show that the unit veetors tangent to the %! and u? curves
are given hy g ke L o

an —
v kll dnl \Y hgz du?

4. If w is the angle between the coordinate curves, show that
COS & = 212/ hyshgy,
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5. e(zh, 2% . . . ,2") = constant determines a hypersurface
of a V,. If detis any infinitesimal displacement on the hyper-

de
surface, we have s dr® = 0. Why does this show that the —

arec the components of a covariant vector that is nermal to the

hypersurface?
6. If o(z?, 2%, . . . , a") = constant, show that a unit vector
. dp d 2
normal to the surface is given by (g”ﬂ X —(’O) « 22 N
O dxf dxe LN
7. Consider the vector with components (dz!, 0,0, . {5} 0).
TUnder a coordinate transformation the components become,
ax az? oz" . ?
(6—1,1 daxt, e del, L., £ d:t:l) Consider the':g’?@components
for the vectors with components (0, dz? . s\, - - (0, 0,
, 0, dz), and interpret ’x:\\'
x\‘
IF| NN
dfl dfz PR diﬂ = 6_~dmrd$2 [ dxn

’l

Using the result of Prob. 7, Sed, 121 show that V/]g| du' dz? -
is un invariant, We defme the Volume by

V= {f\ o« [ Vgl dat da? - - - do

8. Show that ri_x_ is & unit vector for a V.
3

9. The! \n‘faccs 2% = constant, £ = 1, 3 , 7, are called
the codrdinate surfaces of Riemannian space. On these surfaces
all 4 ulrlables but one are allowed to vary. This determines
. bu{"ip&wb of dimensions (n — 1). If we let qnly z! vary, we
obtain a coordinate curve. Show that the unit vectors to the
coordinate curves are given by @ = 1/\/&‘:, i=1 _2, e Ty
and that the angle of intersection between two coordinate curves
is given by

i

CO8 wy = —'\/——'
i

§ appears to be longer as

10. Show that a length observed by
S g lengths with S7

observed by §. How does § compare
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11. Let 7., 3, Jz, p be the tomponents of 4 vector ag measured
by 8. What are the components of the same veetop 48 measyreqd
by 8?7

% dg d )
12, Let T E;g’ 7 be the eomponents of the aoceleration of a

- oL e dy g2 )
particle as measured by S. Find e EJ, E? from (502).
7 A

128. Geodesics in a Riemannian Space. Ify space ‘offeve ina
Riemannian space is given by a4 — H{), we can gompute the
distance between two points of the curve by the Letmuls

tr T 9,
= w8 —— ) @' 503
§ t (gg dt dt),"’;(\ (503)
»,
To find the geodesics we ext-remali’zé%(_}:}) (sce Nee, 40). The
differential equations of the geodestos are [see ey (146))

d 6f). ™ of
_.__b".:s_____-_—_() 504
dat (é}zg ot (504
where f = (g, .."':“:éﬂ)*"‘——-’gg‘ Now
O dl
\\ ' .g‘f_ — _1_ (nai}ig j:a;ﬁﬂ)
SO ozt 2f \ gg
and N
d Qf\:\w d xﬂ
- ,.z__ gaii:“_{"gi'ﬁ.)
d;§) 7 (e
Qe 1 O i Bg.5 )
N\™ = pa o I ~TE B
~O - 2ds/ds (g‘“x + gisd® + ae T+ g T
\ 1 el . .3
T ST s T ek A g’
2(ds/dt)® dz
20
If we choose g for the Parameter ¢ 5 — ¢, g—s =1 %ﬁ = 0, and
H ; ¥ {#d

use the fact that Fi = g, (504) reduces to

" 1 {8g.; dg; 8g .
Fiak® 4 = (-——“_ L A P 0 (505)
- 2\oz# T dxe g J U
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Multipiying (505) by ¢ and summing on 7, we obtain

e |, 94 agaﬁ)
b == il =
T35 (axﬁ + dxe ikl 4% 0

or
2T e dz* daf 508

ds? s ds ( )j

where ’\:\.
0 f 3ar  OGap 69«8) o
=\t - L (507
57 g (axﬁ t dr=  0x° ®07)

The funections I',4 are called the Christoffel symbdi’s\af the second
kind. Equations (506) are the differential eglations of the

geodesivs or paths, \\“
Ezample 135. For a Euclidean space d&hg orthogonal coordi-
nates, we have ds? = (dz!)? 4 - + faﬂ:")g, 50 that gag = Gas

and -;i’ = 0. IIcnce the geodgsms are given by &z =0 or
onh K ds
7 = ws + I, 5 lincar path. 8
Bzample 136. Assumenthat we live in a space for which
ds* = (dz)? + [(=)? H~e¥(da?)?, the surface of a right helicoid

Immersed in & Euch@e‘an three-space. We have

.Z “: 0 1 0
. ’ [[Q"” =
(zD)? + ¢* (:v’)“ + ¢
w\:“\‘:" ) I‘}I = Oy ril =
\ N/ x!
\ =T = .0: g, = I (z)? + &
Péﬁ__" -zl Pgﬁ:ﬂ

so that the differential equations of the geodesics on the surface

are
gz_m_l —_ zl (—d—?—2 : = 0
ds? ds
22 251 detds®

—@.+st ds
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Problemg

1. Derive the I, of Example 136.

2. Find the differential equations of the geodesics for the Iine
element ds? = (dz)? + (sin @)% dz?)2.

3. Show that Tog =17,

4. For a Fuclidean Space using a cartesian coordingte system,
show that I, = (. O

5. Obtain the Christoffe] symbols and the equzgtigns of the
geodesics for the surface &

N
N/
zh = y! cog 2 A
- 4 3
z% = ylgin 3 N
» =0 N

This surface ig the plane 23 = (, and\the coordinates are polar
coordinates, A

.
Agas(
6. From (507) show that ng= Ioalen + goals,.
A
7. Obtain the Christ-oﬁ:e{ :“-;ym bols for g Iuclidean Space using
cylindrieal coordinates. St up the equations of the geodesics,
Do the same for spherival' coordinates.
8. Write out thel explicit form for the Christoffel symbols of
the first king- {7, iy = Gia T
% Lot de SN aut 98 g gy 1 @ gt Caleulate ||, g7,
Lj=12 _Wirite out the T}
WL pe 0P 0TI gue g « _ a
10, I‘f\ﬁﬂn = I"Bﬂ'{a_‘f_-’: é__,"‘_,:’i 55‘; + W 5“;’, ShOW that Pﬁy ¥8
~
arethe’ components of a tensor,
Law of Transformation for the Christoffel Symbols.

A et the ®quations of the geodesjog be given by

 \ ™

\‘;

% . ! gk

bt A 508)

ds? * ds ds (
and

427 ; dF Jgk -

WG =0 .

for the two coordinate Systems o) i ip o Riemannian space. We
now find the relationship between the I and TY. Now
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drt 8% da® d'z

281

and ' T dzrdef | oF de
ds dz* ds ds*  dxfdre ds ds  dxe ds?

Substituting into (509), we obtain

6:L’ d g it dx® daf

oF 0z* dxe daf

m““ ds? dxf oze ds ds + P Yorcanf ds ds =0 G0

~
dx° \
We multiply (510} by ai:z« and sum on ¢ to obtain N

)
N\
e (:_[,‘i dF oT* 9" 327 ax”) drsda? o

"'_"—l-s-

ds d,s
Comparing with (3508), we see that (using the facj;\bhat T = T)

da? % aze guf 0% AxP due az

: 9z 0%y Azt o‘é’E‘*' B
Poope 8T L 511
Tie = Tor 54 5 NS &1
This is the law of transform‘ﬁlen for the T Wenote that the
1“,, are not the components OE a tensor, so that the I, may be
zero in one eoordinate aystem but not
Fzample 137. I‘ronq\(é'tSl) we have

‘\\‘, ’a]_g.l.___llgu,ﬁ.ag_ﬂ'f

L >

in all coordlnate gystems.

>\ ax* ox¥
\/
and from'\]{’rob 6, Sec. 128,
\ ) 80us
A\ agxf = gl + 9eaT
~(sd that
) 3
. 9 log Igl = g1 + ¢*°Gealhn
dx
— erw 4 6§Pﬂﬁ
= I‘ + Pﬁp = 2F

or

-

alog Vid _ ¢

¥

- —

(512)
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Ezample 138. We may arrive at the Christoffei svinbols and
their law of transformation by another method. Diﬁ"crentiating
the law of transformation

e Jxh
55 o

i =

with respect to 7, we have

O AT oFF

L B dg.s dxv dz= @rﬁ dr* s
BEt Azt AT oF ap | 7

I we now subtract (513) from the two equation;spﬁ* i
1t by eyclic permutations of the indices ¢ 1, ke ohtuin
¢
y o« O2F v o 6?;35;}\6::‘:*
=15 —-— "~ AN T
OF 3%* dxe ARIT* o=
D

(511q)

where g
1 Bhe NNIG 0
T, = g (e 2y
2 ozl 7 dxt gur

Ezample 139. Let us congider a Euelidean space {or which

s = (de®} (e 4 - - - 4 (@)
. R\
In this case the I‘;{‘.’t)\ = 0. In auy other coordinate system, we .
have S\
O e AT Az
\d ) = S om e

N\ %

If thenew coordinate system i3 also cartesian {the gy = con-

stz}\  then T =0, or
‘..\‘:‘;"' 9%
Q oF 9xF

4

¥ = qlFe 4 b (514)

where ¢, b are constants of integration.

Hence the coordinate transformation between two cartesian
coordinate systems is linear. If, furthormore, we desire the
distance between two points to be an invariant, we must have

Tl

dz” dxe = Eﬂ: dr” dF7 = i andy de deb

=] F=1] =1
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so thai

L, 0 = bo (515)

A linear transformation such that (515) holds is ealled an orthog-
onal ‘tran-formation

For arthogonal transformatlons,
_ dz* 9P \
i 79 55 on O
' o= 9zt | oF
a1y P — — X ¥ H y ¢
reducns o 8y = Gug T We multiply both SI(E{%?tbysaxﬂ and
sum on %, so that ~,"\\\
% g af  aw
AN S Py (516)

= 5.5 8% = i
Py PO ozt P opi )y ow
X

X }
Now let us compare the laws of trafisformation for covariant
and contravariant vectors. WQ'have

a
N

TE - dx*
Ai = 4 L o (517)
gz aT
\\
we see that
\. - z
,\' > _ E Aa%’é} (518)

O

80 thﬁt orthogonal transformations
ln\eﬁactly the same way that covariant
\’\)are (517) and (518)]. This is why there was 1o dlStl'ﬂctlon
made botween covariant and contravariand vectors in the

elementary treatment of vectors.

affect contravariant vectors
vectors are affected [com-

Problems

1. From {511) show that

— 9zf 9z7 aF + ¥ T
P = TBv 3% oF gze | @ 83 017
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2. By differentiating the identity g**gn; = &), show that

69,-;.1:

adxt = _gkkﬁw‘ - gfaiI‘;:’_

3. Derive (513} by performing the permutations,
g% T a%ze

4. T — = {), show that — = {} ”
97 ozt axr oo MY G O
6. If L\
me _ e 0F70FY OF | 8% o aj}
U 95 g7k o= | 9% 0FF 6.1:“‘ \
show that \\
Si e 028 82 83 TN 0T
T 5% 0%k o GROPT: 020
6. If 2= = xx(ut, w2, . . ., u), a=\f; 2, ..., <mnand
. dx= dxb O"
if hy = Jos o~ o and if ‘:’» A
s ahsk)
Thn = -h§ ( -
(L) P, dut + i dur
show that : i"\\
\™ o= 828 d dze 9twh
Eri(T5 = (T ga
i ’]")k L 0w i gk 7% 9o Bl o

7. Deﬁ,Qe g“g(;c) by the equation §.s(z) = u(w)gas(z). Wo see
that the fetric tensor Jes() is detcrmined only up to a factor of
multh&hcatlon #(z). In this space (conformal) we do not com-
patetlengths at two different points, or, in other words, the unit

o “Pf length changes from point to point. Show that

\ 137(3:)

1ls ]02; p. e ’ . .
Fy I's, and T, arc defined by (507) using

= Tg,(®) + 0,85 + w56 — g*ga,.

where ¢, = 3

Fos and gog.
8. Prove that a geodesic of zero length (minimal geodesic)
. o 8 ]
[that is, z*(s) satisfies (506) and Hap C;i iﬁ = (}] remains 2

minimal geodesic under a conformal transformation.
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130, Covariant Differentiation. Let us differentiate the abso-
lute covariant vector given by the transformation

fIs = Au 6i_a
0%
We obtain
s _ 04, oz= 02f 4 R
% oxf om ey | oF OF

1
(519) .

o a4; ¢\
1t is at once appareni that a7 are not the componenj;s\cﬂ’ ‘a
¥ \7

tensor. However, we can construct a tensor by the“fglloxw'ing
device: From (5lla) (see page 202) i '\"\'.“
T e pr ;ci}
9z dz* OF RN (520)

_‘.1. _— I‘p —_— _— - » .
Fi = Lo oz oz aor | 03190 00"

Multiplying (520) by 4. and subtraeting from (519), we obtain

a4, 7 Fa éﬂ’:;l o )c'_)‘.x_“ ‘EEB- 521
- (e w

g0 that if we define {\
' PPLG M
\\ _ ad; -
O A= - A 522
% [
we havqé@aﬁ' :
N - g 92
. Aiy = Aas o 3
& .. i oz o7
~\‘. .

S

\\ﬁ‘ﬁd Aj; is a covariant tensor of rank 2. The tensor is called t}}le;
covariant derivative of A4; with respect to #'. The comma wi
denote covariant differentiation. Fora cartesian coordinate sys-

i ad; . .
tem, T4, = 0, so that Ag; = 557 O ordinary derivative.

For a scalar of weight N we have

i
9%




.}

/.
s,/o
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80 that
dA |3zl 94 9a ol L
o7 |a7| dme 0w T ax| el
GE
? ‘6;': _ |9=] 8%~ a8
and from (482), /—— pe 33| 02 3% one Hence N
: L\
ad ozl 94 az= loz'v gpe %8 PR N
g o e (523)
ax % dx= AF az[ dxf AT aas‘*

dxe s oI=
A% 072 J%! dxe

Multiplying I}, = I',, — by W“l and subtracting

from (523}, we have \\J
od NATS, = J (aA NATC ) % pag)
s az| { o dF

3 QY
Henee A ; = pyviey NATY, i‘s‘& rcla,tlve covariant vecior of weight

s

N. Tt is called the eovarlant derivative of the relative sealar
A. Fora cartemani‘hordmate system it reduces to the ordinary

derivative. ~ \"‘

In general it can be proved that if s 5 18 relative tensor
of Welght N, ,t’ﬁen

O\ aTl;lgE -
tz -ain / 1538 -
RB¥ = “—“ax + TERSETS + - -+ TEEAT

% \ ol A ’ o
“:;\ gl ﬂs - = g:g:'"y I's
N — NTEE T (525)

ig a relative tensnr of weight N, of covariant order one greater

than Tgigr s, and it is called the eovariant derivative of 785 5
Lrample 140, We have

P ag{;’ u n
Gije = ar Gule — gall

80 that from Prob. 6, Sec. 128,
Ha .k .= 0 (526)
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Example 141. If ¢ is an absolute scalar, ¢ = , we call

B dy . .
0q = 5 the gradient of ¢.

Example 142,  Curl of a vector. Let A; be an absolute covari-
a4d;

“ant vecior. We have Ay = Fwh AJrg.  Similarly,
N
44;
A= —— — AJG N
" aat <L )y
dA; 94 o
Hence d.; — A = 5:;::‘ - a—: is a covariant tg:ﬁsbl\ of rank 2.

N
&"\“,‘
) 3

Itis cslled the eurl of the vector A, If the A;"ﬁ»r\e\ﬁhe components

of the gradient of a scalar, A; = —(?E.: then
0" { &

X )
32 NEE
S Y _ o

curl 4; = ——0 -

8:03@:{{‘% ga? d
so that the curl of a gradwnt is zero.
converse holds. If the curl is identically zero,
vector is the gradjent of a scalar.

N\ :
Example 1&?5 Intringic derivaiives.

Tt can be shown that the
the covariant

dai
i Ag' d -
Since A;; an s are

w4

,\‘\’Ec f(now that A:g _ciT iz g covariant vector.
{ f

0\Y .
th\fimtrmsw derivative of A.. We h
QA did

tensors We call it

ave

«ad
\ &
NS

da?

(627)

54

is
oluie contravariant
rivative.

and write the intrinsic derivative of A a8

an abs

Exzample 144. The divergence of c
¢ jts covariant de

vector is defined as the contraction 0
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Hence
. adx .
div 41 = 4% = + AeTe,
Gx
. dlog v
Now I, = °—§Jﬂ| from (512), so that
za B
N A O Rl O
divdi=— 4+ —— "% 4o a
d - Vlp[ o O
AN
« \J
div 40 = —— 2 (T g (528)
VA= —e gl AeN it
. ‘/I!;'] 9z K&
. QAY;
In spherical coordinates, we have \\
07
1 0 N
Vil =10 O = 72 gin ¢
0 O4ysin? g
so that N
div 4F = 1 [a(fr?s 6 A + 2 (2 sin ¢ 49
1 b= " R 1n ¥ - 3 F
VT i in g (@ 96
e : .
Q : + ai (»* sin ¢ A‘PJ}
A ®

»

and chang:m:g A? and A¢ into physical components having the
dimensibns of A7 (see Example 121), we have
o

9 1 a ] &
i — [_ YT iy N 'L S ~A«o]]
d\'&\ ar(‘r smﬁA)-{—ae(rsm&A)—[—aw{? )

3 rlgin ¢
) AN E‘xam'ple 145. The Laplacian of a scalar invariant. 1f o is a
&\ " secalar invariant, ¢ is the gradient of ¢, and the div () is called
" thé Laplacian of o.

. . 4d
Tap ¢ = V% = div (¢s) = div —‘P,
! Sad
Thus
1 g d
2 Y. A o 529
ve ’\/|—‘ dze (\/H g 6‘:3.:") (729




Sec. 130] TENSOR ANALYSIS 209
deo .
We changed P mto a contravariant vector so that we could

i
apply (328). The assoclate of ¢ 1s g% a—gj-
iz

In spherical coordinates

1 0 o P 1 0 0
N 1 N\
E|{}s;.'l_'Ir =0 ':"2. ] s 19‘”' = ; 1]
Dy
| . 0 A %
IO' 0 r s.m g 0 ,3:% S5 o
< 3
g0 that .':.“

V*F——-]— 2 r? sin HE -I—.a sin 9—-‘- + . 61*’)}
T rkgin 8| ar af N de \gin & &
Example 146, In Example 14d ‘wa deﬁned the divergence of

A
the vector A% as div A* = A = ‘?—' + ATy Fora Euclidean

a o
spacc using cartesian cgordmates, the T, = 0, so that
o ar | oAl a4
1 t N Tl ML ey
,dl.‘i'"*’i* 20 T iz

The quanmy * is a scalar invariant. If we let N be the 0213-
ponents, & the umt normal vector to the surface do, then A%
s Etlb(\em invariant. In cartesian coordinates the divergence

ul‘am is
R '\ ) _ .
S e e
N/ " In tensor form it becomes
S
i = Aa \ra d (530}

o innt
We cun obtain Green’s formula by considering the covaran

vectors ¢, and ;. NOW et

A; = Yo — W"
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The associated vector of A; is A% = gaif, = 7 (Wos — ).
We easily see that A% = g=i(ye,, — e¥,ic).  NOw g%e .. i3 an
invariant and in cartesian coordinates reduces to

6‘2{0 32@ 62(.9
e — L
(022 " (@z%)2 T (axnyr T P @
Hence, using (530), we obtain Q)

[[[@Lap e~ oLapy)ar - [ [ o4 ,-Lm-'zzdgt.."
¥ 3 D

=[] @b v 0N s
s‘.w"\'\.
Ezample 147. Let us consider the coyal"i'ant veotor F,. We
multiply it by the contravariant vedkor dz and sum on o to

. . . aae .
obtain the invariant F, dp= — Fad— ds, which redurces to f-dr
. Ods
in cartesian coordinates. In Eiéample 142 we constructad the eurl
of & vector, which turnedvaut to be a tensor of rank 2. We
Dow construet a vector whose components will also be those of
the eurl of a vectors, We know that Fogis a tensor. Now

1 .
define e*fr = mj} a, 8, v Is an even permutation of 1, 2, 3;

B = N

N V‘H i a 8, ¥ isan odd permutation of 1, 2, 3;
e f{%ﬁherwise. Thus

’§m'
el = el —

:"\‘; ‘\/I—QTl,

‘We obtain a now Invariant

=, 112 = )

GFr = eobvF oy
. . OF,
In cartesian coordinates Fog = —2, and
‘ b

Gt = B, , o s 4 N, , = 2 93
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and similaily for G* and G2  Hence Stokes’s theorem in tensor
form reada

dic®
! P ds = fs [eoPoiyis (1)
Problems ' QO
. . e s 3% Oy
1. By starting with 4* = A= P show that o\

7 L AD
A= '@ + AUI‘;‘ . .w\\'
i8 & mixad tensor.

. Prove that (gi.d®); = gdl <

. Prove that (4=B.); = 4*Bay, '{Tﬁ‘:B“

. Prove that |g[; = 0. A L : A
. Use (5290) to find the ;@}ﬁmian of F in cylindrical coordi-

¢ t\\.l

/

nat

Prove that 8, = o\"
1289 Tl g i =0
Prove that _Yﬁ Py Vgl g + Tigg? = 0.
¢ N . . o . .
8. As in Exhple 143, show that the mirinsic derivative
SA¢ F AL NS a .
g4 ANXA T a is o contravariant vector.
8 a}:.\'“: ds
9
. B

e =R B~ RN R

\E“‘]}O“ that the intrinsic derivative of a sealar of weight N
AL = ﬁ — NATY d-f,- so that if A is an absolute constant,
185 ds  ds ’

o b o B'
10. Show that (ga,sA“Aﬁ)-f = gn‘ﬁA,g'Aﬂ + gﬂﬂA A,].
11. Show that AZ, ;% 4 T, - TAL for an absoute
. ot
mixed tensor A”. 2
12. Show that V¥(p9) = ¢ V¥ + 2V W H¥T¥

_ 9, AT e - ASTE
13. Slhow that % = 7 5 (Vg 47) — 4il
g



302 VECTOR AND TENSOR ANALYSIS |Sec, 130
14 TF A; = Adz, ) is & covariant vector, show that

54: 94, dat

=4
5t a Ty
' . dv; 61}‘
and hence that the acceleration f; = T —I— vy 7,

15. Let A, be an arbifrary veetor whose covarlant deriv ativs
vanishes; that ig, Ao g = 0. Censider ff TP phalNg do, and di:]ply

the divergence theorem to the vector ?“37\“. Henee ShQW that
f [ Ny o = | f [rga N

\

16. Let s; be the displacement vector of anhy: partlrle from ilg
position of equilibrium (see See. 115). %‘know that s;; i3 a
covariant fensor. ‘The relative dlspla,e‘brﬁcntb of the particles
arc given by O

3s; = 8, dr '
%(‘Sn i + s;r a) d@' + ‘2’(8 g 8, 1) da?

Ir

Show that the torm ¥(s:;~ 83 ‘) daf represents a rotation,
We delinc the symmeM(. strain tensor £; by the equation

‘/

S
NV Ey = s+ s
The stress tensor Ty is defined by the cquations
,\’.\"  AF; = TyNi e

where, \Q% is the force acling on the element of area Ae with

nqr.ggai vector N7 (see Sce. 116).

“\Eet f. be the acceleration of the volume dr and 7, be the force
\per unit mass acting on the mass in question. Show thaf

[ o ] s ] s

or using contravariant components,

[[[ s [[rio= [ [[ oo
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Now deduce the equations of motion
ol + T = pof"
If 9+ = pg~, show that

pF, - gt = T
or i g of

oFr — pr = ofs [see (411)] QO
131:. Geodesic Coordinates. The equations of the geo&?;éiés
are given by O
d’r? . du o -
R ARG
where the T, transform according to the ,@W ;
_ Ja® ot BE\ ézz“ fi.é_‘ (532)

ri o= e WSS
w = Loy 55 op oy oW 0T 02°

_ We ask ourselves the folloyyi,ffg:‘(iuestion: Tf the T are different
from zero at a point zf. &3¢, can We find a coordinate system
such that T = 0 at. {he “ecorresponding point? The answer is

ulres,,l {»‘\
Let ¢(\J
et \\ (
533)

S — 9t y(T) ol — 0 D)
DN/ L
o e SE — sand [ =
1lfi‘t~a$,-{ 5; and ‘ — 1, and morecy

|07y
The point #* = ¢ carresponds to the

or the transforma-

. 'Q../ la
flth 533) 18 nonsingular.
_point 7 = 0.
Q Now differentiating (533) with respect to ¥, We obtain

9T o 534
= L M~ O g (534)

) axt ;
because of the symmetry of Tuge Hence = = 0y
g
t to TF, we obtain

Differentiating (534) with respec
a*xt ., 02 azf : " d2xf
= 25 oF + Ted)e 53 5% 4 (Thgele” — 4 ) 57+ 5%
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go that
azt dz¥ o8
= T
az* 0T, ~ e g o OF|,
= —(I‘aﬁ)qaza? = (ij)q
Substituting into (532), we obtain
(Tido = (U5,) 850578, — (T5)ebk o

= (Tha — Th)s = 0, QE.D\

Any system of coordinates for which (Tj)r =0 JHL & point
P is ealled s geodesic coordinafe system. Ins %uifh a svstom,
the covariant derivative, when evaluated at, jg&e‘ origin, hecomes
the ordinary dLrlvaLne evaluated at the origin. Tor example,

a4 » dA¢
“90=(a) rb@”o=(§ﬂo

since I't; = 0 at the origin. s.’j?

The covariant derlvatwe & a sum or product of tensors must
obey the same rules thati hold for erdinary derivatives of the
caleulus, for at any }{mnt we can choose geodesic coordinutes so
that

\\ i ) i !
A5+ B‘.= aA._ LB _ A+ BY
axi ax! dad

= (4 + B,
e \?
and Al x’—‘k"B‘ — {A* 4 B9 ; is a zero tensor for geodesic coordi-
{chce A 4 By — (A1 4 BY); is gero in all coordinate
sypt?}ms, so that
o AL+ By = (4 + BY;

4\ Y4
./ We leave it as an excrcise for the reader to prove that
(A".Bj)lk = A‘:kBj + .A.fB-j_k

Equation (533) yields one geodesic coordinate system. There
are infinitely many such systems, sinec we could have added
Cag () (® — @) (2F — ¢H{axY — ¢V) to the 11ght -hand side of
(533) and stilt have obtained (T%), = 0.

A special fype of geodesic coordinate is the following: Let
# = #°(s) be a geodesic passing through the point P, »f = ai, and
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da!
let & = “) . Define

ds r

5 = #s - (535)

where 8 is arc length along the geodesic. Tach & determines a
geodesic through P, and ¢ determines a point on this geodesic.
Hence every point in the neighborhood of P has the definite
coordinute ¥ attached to it. The equations of the geodesics in

N\

this coordinate system are
dz‘f?":__i_fi @@-—0 ".\t\’
ds? * ds ds O
g F ' N
|7 . ksl ] : D ‘
But s & and i 0, so that _ "W}\\‘
pr =0 OV (536)

Since this equatioﬁ holds at the poing~for all dill'ections £, we
mugt have T + T, = oT%, = 0, {8b "that the ¥ are geodesw
coordinates. The # = s areQ.g’aHed Rjemannian coordinates.

g

Exzample 148. If Flsa uﬁﬁ:vector, we have
ekl =1

- - o "\—
The inirinsic dcrlvastlﬁ is
\"

N 5Ea . 5Ef _
O ges— gr— =0
x:\."‘ ’ " 5? _
since’\\(é},;j‘f = 0 (see Example 140). Hence 2 0, and

.'\
N (dE s dm") tor
e (22 dx’\ _ g, We see that the VEC
M\:s'( & (ds + &l ds
& i p®
3 s

is normal to the vector &
Problerns

dze da? gtant along 2 geodeaic.

1. Show that Jas “* remsins con

Eg ds
. o i oggk = 0.
2. Show that for normal coordinates L@
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3. If s is arc length of the curve ¢, show that the Intringic

. dzt .
derivative of the unit tangent % the direction of the eurve

has the components

%t . dxf dak
i e, ===
ds? + i ds ds
N\
What are the components for a geodesic? O\
8 8Xe Y. NN
4, Prove that o (X2Y,) = Y -+ Xe= TR \/
N

132. The Curvature Tensor Let us Longldel the absolute
contravariant vector V% Tts covariant dé‘s}% rative yields the
mixed tensor

v N
V".=9—+1><a‘r
SN

7
Y No

On again differentiating covg,«riélﬁt]y, we obtain

~~N

. v . NNy
VTJ'E_ ak+VP AL Vf; ;zk
'\
a2y ari,  fave )
Fa_ g repe Yo
= 5k 6:1,’ +\J w TV + (axf + VAT ) T
‘ - (‘E + Vﬁr‘a) !
N
\M .
Intiithwéngmg k and j and subtracting, we have
- Ay Vi — Vi = VB, (587)
< ) Where
. arh. ars, . .
ajt = ﬁ e T PETh. — I8 (538)

Sineo Vi, ~ Vi, and Vi are tensors, Vi, must be the components
of a tensor, from the quotient law (Sec. 126). Tt is called the

curvature tensor, We can obtain two new tensors of the seeond
order by contraction.
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Let

- T3] R ) A N
R Biag - Q - a:EJ + Pfarﬁg I‘i Ba (539)

*I'hiz tengzor is called the Ricel tensor and plays an important role
in the theory of relativity.
We obtain another tensor by defining

aTe. T,
Sy =B, = r \
ax? dxt N

Evidently Sy = —8S; and if we use the fact tha.t.‘j\""

3 log ‘\/H _ e :'\\':
dz* “"\ v

we have that

9? log ‘\/IE 32 log \/H

0= dxt axf gz’ axt

=10

0 g0 that the Ricci tensor is symmetrie

Now R‘:j - j‘ = S
ﬁuﬁ have deduced this fact by examining

in itg indices. We

(539) dircetly.
The invarisnb B = 7Ry is called the scalar curvature.

133. Riemtann-Christoffel Tensor. The fensor
AT
:’ ’ R gk = gﬁaB?j (541)
’§ Bijk &

Is Gaﬂed the Riemann-Christoffel, or covariant curvature, tensor.
'“‘Let us note the following important result: Assume that the
Riemannian space is Euclidean and ©
cartesian coordinate system. Since Ij

(638) o 512

hat we are dealing with a
i {x) = 0, we have from

i
it

in this coordinate system. Bub if By, =01in one com:dmat-e
system, the components are zero in all coordinate systems.

Hence if a space is Euclidean, the curvature tensor must vanish.

We shall show later that if BY; = 0, the space is Euclidean.
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If we differentiate (538) and evaluate at the origin of & geodesic
coordinate system, we obtain
3T, e,

Ba‘ _ o«
ik .
WEE O Jxm dxF 9T o

Permuting j, k, ¢ and adding, we have the Bianchi idontity
wrio T Baviz T Bigea = 0 (513)

134. Euclidean Space. We .have seen that if a7 spdcc i
Euelidean, of necessity B}, = 0. We shall now ;‘xme that if
the By, = 0, the space is Euclidean. Now \
¥
928 dzv oy° ke dy
Yy dy* dz= ’.'&y‘?d‘; dee

T;:k (y) = Tj A\ ( )

If there is a coordinate system Qxl >c2 ., a"; for whieh
I3, (x) = 0, then D
. o) 62:-;“ ) -
b N g o (544)

“ay? dy* dze

and eonversely, if (54@\11\)]@, the I'g,(2) = 0. Now letus inves-
tigate under what{@aditions (544) may result. Weo wiite (544)

2]

.“':;“: aZxe _
,\:l:\ L W oy i ) (545)

4

WhJCh\l‘epTesents a system of sccond-order differential equations.
Let, us define
N 320

W e o 22 (546)

N/ “ :By‘i

so that (545) becomes

duj,
dhyt

= 4TH(y) (547)

For each ¢ we have the first-order system of differential equations
given by (546) and (547), which are special cagcs of the more
general system
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3 Jo Sp—

._z_? — f;:(zl, 22, -3 zn*_—l’ 'y!,. L ’y") ';": = 1: 21 caa gl +1

dy i=12 ...,n
(548)

1 wo et 22 =27, 22 = u, 28 = 45, . . ., 2"" = u, Fgs. (546)
and (547) reduce to (548).

% 0%
oyt Iy oy Iyt

We certainly must have » and this implies

bf | affer o i &’
ayt | B dyt By o oy O

“or ) ("}g (549)
o | off off | ofi
i Nl X E Lo N\
ayt T o 7 &yt T o i $

If the fi are analytic, it can be shown tha.%‘t;h\:\ ‘integrability con-
ditions (549) are also sufficient that (548) have & solution satis-
fying the initial conditions 2* = 2 ady = yj. The reader is
referred to advanced texts on diﬂeg‘éli‘t-ial equations and especially
to the elegant proof found in ﬁa{s%bn Darboux, ‘“‘Legons systémes
orthogonaux et les eoogdoriﬁées curvilignes,” pp. 325-336,

(iauthier-Villars, Paris, J410.
The integmbility,c@n"@i}ions (549), when referred o the system

(546), (547), becamex
,} N I‘;‘J;a'u'; = I‘?;“Z (550)
2 Bl = 0

Th,&’&ﬁf’dquatinn of (550) is satisfied from the symmetry of the
toand the second is satisfied if By, = 0. Hence, if By =0,
— yoin terms of ¥, 9% - - - 5 ¥ For

mu%é)cén solve {544} for &
Nl coordinate system (z!, 2% - - - , @), we have T, (@) = 0.
Problems
1. Show that Rup = — R = — Ry and that
R = Hpinr = 0

9. Show that Ruge + Bueg + Fai = 0.
3. If Ry = kg, show that B = nk.
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4. For a two-dimensional space for which @3 = go =0,
show that Rz = 0, R11¢es = 11 = Ris01 and that

B — Bioor
J1iff2n
ng - 'Q'Rgig
. Show that B, # 0 for a space whose line element is given
by d82 = (dzV)? + (sin x')(dz®)2 \é
6. Derive (530} from (546}, (547), (549). Oy
7. If R} = ¢gl=R,; show that (£); = L o%, <:} )
7 ? 2 ax‘? ,‘\:\ ®
o’
&(/
\("\
N
O
@
O\
O~
N
&N
&
A\



CHAPTER 9
FURTHER APPLICATIONS OF TENSOR ANALYSIS

136. Frenet-Serret Formulas. LetX = E;be the unit tangent .
vector to the space curvea® = #i(t), 7 = 1, 2,3,ina Riemannia;b\.
space. In Example 148 we saw that the contravariant vechors)
W, al . L define th fure asx = g

m is normal to A, Let us define the curvaiure ask —.g{g..& 5o

and the principal unit normal #* by .\,\:\"‘"
LI (551)
ds (&
’..}\

(Bt —
Since ¢ is a unit veetor, we know hhat-—gs— is normal to uf. Now

&N

N
Faghu® = 0, so that the intrinsferderivative yields

S
ga'ﬁ%st\ﬁs + [ s #

N

. :agaﬂ
BINCe Gog; = 0 gp>— = 0. Hence
Gerd = X 0755
“\x;\wl 6#8
Y Prailat ayf =)
A Gap N = T Eab%H
~:3~\
OI;..\‘:; . .
» S (552)
wne = N) =0
Y Jus (ﬁs
since gapus® = guA™N = 1.
Sut o i gnd sinee
Fquation (552) shows that _"3% + kA8 normal t0 A’ &
i 4 . i We
‘56_“ and N are normal to i % 4+ kW8 also normal' to M
8

311
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define the hinormal +* by the equation

o 1 Blu. )
o= b (553)
or
Sps .
£ = — k' — {554)
s
where r s called the torsion and is the magnitude of N
Sui K ~'\.
( —+ K?\“) AN
« N/
Since » is normal to both M and 4, we have xs‘
Jauzv™N =0 \.\\\ N
Fapropf = 0 \ (555)
By dlfferentlatmg (555) and using (:)5 )\(094) (555}, we leave
it to the reader to show that O
Gaptt® (ﬂcf‘;«ﬁi) =0 (556)
\\d 63

¢ P
i
’ V 4

k

N
- N
i 23

&
The veetor rut — — 1(&11113 normal to all three vectors N, b, +.

Since we are dea\u?g in three-space, this is possible only if

avt
P - T = 0 011:
og <
. :'\;w ﬁv‘ .
7\V — =1 (587)
\/ 68

Wﬂtlﬂg (551), (554), (857) in full, we have the T'rvenet-Serret
formulus

dxt oy dxf .

ds + Tea) ds e

dut ;: duh =
as T la st = 0 4 ) (558)
dv

dg T ey =
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For a Euclidean space using cartesian coordinates, the 'y = 0,
and (558) reduces to the formulas encountered in Sec. 24.

Problems
1. Derive (558).
2. Using cylindrical coordinates,

ds? = (de)Q ,_I_. (l:l)z(dmﬂ)ﬁ + (dxs)z

and for a eirele 21 = a, 2* = ¢, 3% = 0. Expand (558) for thig™\

case, and show that k = 1/a, r = 0. N
2y o'\“\’

ﬁ)\ 8
3. Bhow that = —kB —]'--a—x‘u' — KTV, N\
§

\ W

4. Since (558) is true for a Kuclidean space usmg ‘cartesw.n
eoordinates, why wauld (558) hold for all other Agdrdinate sys-
\
tems in this Buclidean space?

d=t d*zt dee'd 3
5. Bince A = E—: show that — s +’I‘ \3— N are the ecom-

ponents of a contravariant vector. 58 b

136. Parallel Displacement of Vectors Consider an absolute
contravariant vector Az, % ,a") in a cartesian coordi-
nate svstem. Let us assume that t.he components A are con-

‘.'

stants. Now

< oF - &a:‘
Drsaats, A=A
\\ " O fa* aze
s0 that A\
72l o
AN/ i o Ae o
P \d a4t = 4 dxP dxe AFY
"\‘
Slnq&}dA‘ = (0. We thus obtain
RN o PE axk dx®
O = i
Q ai = A 328 0" OF OF

From (5ila) (see page 292)
. 3tz OF
)
I‘.).,, AT 3T az°

=i 8 a
_E El«“i_ﬂf__ from (483)

3z’ dx= 0T 0F°

since T, = 0

so that dﬁi - __,A_af':_r dg;'!' ) (559]
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In general, a Riemannian space is not Euclidean. 'We gener-
alize (559) and defline parallelism of a vector fleld A* with respeet
to a curve ' given by 2! = 2i(s) as follows: We say that Afis
parallelly displaced with respeet to the Riemannian 17, along the
curve (7, if

dA‘ Ao, dar
ds - s
nr 'n\
SA¢ dAt drr N\
2w 42— 2
58 ds + I ds N (360)

o W/

%
ool
7%

We say that the vector A% suffers a parallel displa:cuﬁult along
the curve. Notice that the intrinsic derlvatlve\o\‘[ A# along the
curve 2*(s) vanishes.

. & d B
In particular, for a geodesic we haxQ @ + g ddxs (:i

i AW

dr
g0 that the unit tangent vector d—s stffers a parallel displacement

W

along the geodesie, A\
Erample 149, Tet us oohsidei two unit veetors 4f, Bf, which
undergo parallel displagements along a curve. We have

AN
+\J 608 0 = g.gA2RP
™ g

and \
Sebs’ 6) §A= 3Bs
X7 = e — B+ gpde =0
RS, bs ds B8

so that @ = constant. Hence, if two vectors of constant magni-
tuded u dorgo parallel displacements along & given curve, they
:a.re mchned at a constant angle.

wo vectors at a poiut are said to be parallel if their corre-
bpondmg components are proportional. If A¢ iz a vector of
constant magnitude, the veetor B' = ¢Ai, p = scalar, i parallel
to AL, If A¢is also parallel with respect to the V, along a curve

541
¥ = z*(s), we have . 0. Now
&

3B sA*  dep do 1de d{lo
= —_— — LR—— o T R g (p)
55 ¢58+dsA dsﬂhgodsB“ ds B
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We desire B° to be parallel with respeet to the V, along the curve,
g0 that a vector Bf of variable magnitude must satisiy an equa-
tion of the type

B _
o = o) (361)

if it is to be parallelly displaced along the curve.
Problems \

1. Show that if the vector A of constant magnitude 'i's:bur-
allelly displaced along a geodesie, it makes a constant, angie with
the geodesic. : N

2. If a vector A’ satisfies (560), show that itf\is of constant
magnitude. o

3. Tf a ‘veetor B' satisfies {561) along g gurve T, by letting
4+ = B ghow that it is possible fo ﬁn&\,b so that A suffers a
parallel displacement along T'. x\

4. Let #i(0), 0 < ¢ < 1, be an infihitesimal closed path. The
change in the components of & eontravariant veetor on being
parallelly displaced along thisglosed pathis 847 = — I'gA=dr?,
from (560). Hxpand Aefg), Tes(z) in Taylor serics about
£ = z'(0), and negleq’ging tnfinitesimals of higher order, show that

RN
ot iy, An o der = P da”

where Riﬁa,{l’s; the enrvature tensor {see Secs. 132, 1:_33, 134), .
137. Riuallelism in a Subspace. We start with f;he Rie-

manpin®’ space, Va, d8° = fep d2° def. 1f we consider the

trgngformation

\\ xe = g=(ut, ud ... Jum), m<n (562)

we see that a point with coordinates u!, u% PR wmis a p.ofnt

of T, and also a point of V. The converse is not true, for given

i i i 2 » may not exist
the point with coordinates o N there may

i i = 1wl ., u™), since
wl, u?, . . ., w* which satisfy 2% = ze(ul, ud . . W)

m < . NOW
dpraxf
de? = gop A% 2P = a8 300 du’ du
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so that the fundamental metrie tensor in the subspace, V,, is
given by
dxe dz?

hg‘ = ey — .
I P

dx* . .
Now dx> = o du, g0 that if du’ arve the components of a confra-
uﬁ

variant vector in the V,, dz® are the eomponents of the sume

vector in the ¥,..  Ingeneral, if ¢(x!, . . . ,u"),1 = 1,2, . A\
m, arc the components of a contravariant vector in the I WO
say that <\ \
———— AN
\ 4
dr* " .
Ar= —a' a=1,2 LN, n (560
du? 792\
N\

.\
are the components of the same veetor in tle Vo
’ .« i

§a .
We now find a relationship bs,twoen\ﬁ and —, where s is

are length along the curve u! = u‘(s) or the space eurve
)

2 <@ ui(s)]

Differentiating (563), we h‘ig}g
dAz e dat | g dud
\&?V du ds | o ot ds

and O\
5;’4“ di“‘.\, dq, T3 i Boene 3
U= CAAL (pg),ae I8 L Betda | e du
ds e ds i ds | gw dut ds
O 3 azxf axf du!
A\ + ()0 — S =
N auf i n’.a
{
\'“\) Henee
dx= sl e
Hoa '__'E e
du* bs
- dd dui aaj Y Az Hpa Apv
= h-;‘k d + a-“';i—-‘ |:Q’N(I‘§7 ._i_ gda —JJ_ (_;
£ 'S i F Jui auk dul gt dur
dxe A= dat

& du
ok s P s + @ PR huTn,  (see Prob. 6, Sce. 129)
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Hence
dx° sA= daot dw
T er— —_— ; R
“ ut b hus [ ds + (T ds ]
and
9z §A+ 5 dat
Yoa aut 88 ds (564)

A
From (564) we see that if o is pa,ra.llelly displaced along\

.. 84¢
zeu'(8)], that is, ol 0, then g = (. Thus the theol%m

Ti 5 curve O lies in a subspace V. of Va, and & vectorﬁel& in Vi
is parallel along C with respect to Vs, then it is a.lso p@rallel along,
(' with respect to V.
p \,,’
Problerns \ >
. Prove that if a curve is a geodesigna V,, it is a geodesic in

any subspacc Ve of Va Conmd,er the unit tangents to the
geodesics. -.:. ’

dz?
2. By considering & fixedy show that — is a contravariant

vector of ¥, tangent t.o\the ut curve, obta;med by econsidering
whoul ... u% . wm fixed in the equations

O = zo(ul, .., W)
NGO

3. f &f 1é\pa.rallel along C with respect to the
o4 \n‘mal to the space Vi, that 18, normal to the u* curves,

V., show that

- 15
s
N 1 2 , M. . _
VL, Lnder a coordmate transformation @' = aud, .., U™
\’-* =1,2 ...,m thez" remain invariant. Hence show that
dx* agcﬁ z°
25 = '5;,7! Fagi = 3:5‘ Fi

ative to the

where the covariant derivatives are performed rel

. dat i
metric hy, that is, a5 = P + a* (T
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5. Show that gae(r%ef + 2%%5) + a%%a2),

VECTOR AND TENSOR ANALYSIS

[Bec. 138

a agﬂﬂ

=0,

A where

covariant differentiation is with respeet to w? and Ay
6. Show that A% = x%a’ + a%e}, for cach a.

138. Generalized Covariant Differentiation.

dr=

The quantities

o 2TE contravariant vectors if we consider ¢ fixed; for if
.u‘l

and y* = y=(z, . . .

N
e = ge{ul, . .., u") R
KO
yz), e =1,2 ... ,n, then O
By  dy* dxf

out  dxf du \\

. = . .
showing that the pos transform like, B wontravariant veetor.
J 9, N

However, if we consider « as fixell,\the 8_‘;’ i=12 ..
™ %

are covariant vectors in the I, for if @' = @'(a?, . . .
dx= g
dul H N

dz*

we have — =

A

.\ Maxa

-1 m!
] um)!

- +W8 propose to consider tensors of this

N/

type, Latin indices indicating tensors of the V., and Greek indices
indicating tensors,éf ¥he V..

Let us considefrthe tensor A%.  We wish to derive a new tensor
which will be,,a:bensor in the V, for Greek indices and a tensor in
V. for Tatih/indices. We consider a curve € in Vi given by
w = w@md by 2% = 2%(s) in V.. Let b be the componentsof &
Vecp({i',l’lé]d in V,, parallel along ¢ with respect to V.., and let &«
beft\he components of a vector field in V, parallel along C with

'w\rfé‘s"pect to V,. Wehave

db? . i
& + T3 %ﬁ =0
¥ (565)
%a _ 1w, 97 _
ds 8% s T

V-Ve now consider the product bic.A?. In V, this product is
an invariant (scalar product) for each 4, and in V,, it is & scalar
invariant and is a funetion of are length salong €. Its dertvative

13



Sre. 188] FURTHER APPLICATIONS OF TENSOR ANALYSIS 319
a4
(b‘caA“) = b’ca Tt + b‘A“ e + Caﬂ“
. dA" d ;G
= e L 4+ AT, — AT}
,( “ds “ds
Qinee b and ¢, are arbitrary vectors, and

making use of (563).
since — {b'c.AY) is a scalar invariant, it follows from the quotient

Taw that A
dA" da? dutt

T o (4
S+ AT — ATy Ry 1566)

AT, Wecallit the Lr@iﬁ'sic deriva-

iz a tensor of the same type a8
tive of A7 with respect to s.
K70

We may write (566) as
aA [ nld axﬂ s. [t} uk
o+ Aila 5— S ds
dut

a*u,’h

AN & d

and since this is a tensor for a&l dlrectmns T the directions T
it fe(lows from the quotient law that

of ¢ are arbitrary),
{567)

A= A
\Y;
of A7 with respect to the

'\ o
feralized covarlant derfvative

is the, gemt
v m,\e\
o Problems
° v
N/ 1. Whyis Ajxa contravariant vectorin ¥n
2. Show that
. BAE‘: a,?__t__rAa__f_rkA
A.Ba',‘g‘ = _51_‘{,; + I‘WA. a’wf fritos auf
is a mixed tensor, by considering the scalar invariant beidads:
= g% = ?—x-f and that

3. Show that 77 = Tu = 3¢
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ol
® — TV i ¥
T = g T Lt T§, o5
= afy + Taiel

4. Show that gasxia’ + gusziel, = 0, and show by eyvclie
permutations that g%’ = 0.

5. The z%; of Prob. 4 are normal to the vectors #%, the tangent
vectors to the surface. Ilence the z7; are components of a vestor
normal to the subspace V... If N¢ are the components of a unit
normal to V., we must have 23; = byN*. Weeall B = by du dw/
the second fundamental form. Show that b; = gasafNAN T
the V, is a Euclidean Vs, g0 = 8ag, show that b = ¢, b= /,
bse = g (see See. 35) for the subspace r = r{u, v). ‘ R

139. Riemannian Curvature. Schur's Theorem,{ Fet us con-
sider a point P of a4 Riemannian spacc. We assagiate with P two
independent vectors A{, Af. These Vectors.,éet-ermine a peneil
of directions at P, given by \

g = a\ + o < WKe
Every pair of numbers q!, o2 detgzijr’ciihes a direction #. Sinve
the geodesics are second-order differentia! equations, the point P
and the direction £ at P deterriine a unique geodesic. The locus
of all geodesics determinedn® this manner will yield a surface.
In a Euclidean space thé furface will be a plane, since the geo-
desics are straight ]iz}e&nd two vectors determine a plane.

We now introduée’normal coordinates y*« with origin at P.
The equations pf%he geodesics take the form y* = Z=s, where

dy™\ 0 .
£ = s (and the geodesic surface is given by

7
&

N ¥* = alsAf -+ a®\§
O = ] - uB§ = wh? (568)

j}uﬁlmed from 1 {0 2 and u' = a's, u = g%.
The element of distance on the surface is given by

ds® = hy du du (569)
and if ds? = g.s dy* dy* for the V,, then
dye d -
B = Qo o W FaghINE (569a)

dut guf
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where the g.s represent the eomponents of the fundamental
metric tensor in the system of normal coordinates.

Now let Ryu be the components of the eurvature tensor for
the surface S with coordinates 4, 4% Let us note the following:
‘The g.g of & Riemannian space completely determine the Chris-
toffel symbols T'z,, whieh in turn specify completely the Riemann-
Christoffel tensor K.g;.  Once the metrie of a surface embedded
in u V, is determined, we can defermine the T}, for this surface, ‘
and the R can then be determined. We need not make a
veference to the embedding space, V., to determine the. 7?,;;;
1t iz apparent that the hy can be determined without leaving the
surface, so that all results and formulas derived fromsthte hi; are
intrinsic properties of the surface. All we are trying to say is
that ds® = hy du’dw is the fundamental met¥ig) tensor for a
Ricmannian space which happens to be a su{gace embedded in a
Riemannian V.. We shall use Latin indjée3-for the space deter-
mined by the metric &y and Greek letters\for the V..

The indices of Ry take on the values 1 or 2, and from Prob. 1,

See, 134, we have that ' ,:j:“
Rz = R212b = "—le = —Rane
Rnn = Rugs = B = 4 N = RBupn=-""= Raony (570]
S -0

If we make an ah@iyt;c transformation, # = @#'(u!, u9),t = 1,2,

then RS

2N \_.. 4 au" T.!-b aur aud
o\ Fin(d) = Rasealts} - D oW o o

~\
and ,\\“
R\ _ u® au” u’ aw‘
¢ \ N Rz = Bopea— FYe auz aul aug
& N2
Y g (PR ) (571)
. = AN\ ggtout  out OW

by making use of (570). Thus

ul, w?y |* 572
szm = Rmz [J (ﬂl ﬁs)] ( )

ue Jul
RS r _-—-—— go that
Moreover, d3? = hy @ di¥', and ;= ho o 9
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|A] = [plJ2. We rewrite (572) in the form

Eiore _ E}L_QB .
K= =T (573)

Equation (573) shows that K is an invariant, and it is called the
Gaussian curvature. It is an intrinsic propoerty of the surface.
We now determine an alternative form for K in terms of Abe
directions Ay and A§ and the curvature tensor for the ¥, atbhe
point P,  The coordinate transformation between the Chmmoffd

symbols is given by (see Prob. 6, Sec. 120) ‘\
= ay* oy 6‘%@_}"9 (')y
U i L
Raly() = gl %) 3 o o auk +ges 3‘&"\6‘&5"‘ du’
which reduces to
haTh, = go,TB N @o} (574)
a.ya o aﬂya :H \ 4
since ; = hj, m = 0, fI‘OL‘El(DﬁS)

At the point P, T4, (y} = G‘:fs’ee Sec. 131), so that kT, = 0
or hmhglh =T, = 0 H*ence the curvature tensor can be
written ~

Rlz}z({f’)}\: h”R;m(P)
[

N - o
Ju? du! (575)

L >

from (538) @nd (541).
Frome{874), hyT},(u) = Fen D8, ()ATASNY, S0 that at tho origin
of Rio@ahnian coordinates

T
&

g, dTE,

AN . . i _
~\ hy s = Je P AAEATAL (576)
99t . _ .
since ?J” = goal'z, + Geals, = 0 at the origin (Prob. 6, Sce. 128),
oy B aqﬂ’ﬁ' s
and from (obga) = MMM —— =0. Similarly
Iy :
ATy, ars, . ' e
higr = e XY 7)
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Using (338), (541), (578), (577), it is easy to show that

Rine = MMAIN Rosye
Tinally, st Rathaly (578)
_ hi R
lhl = } P T hathas — hly
and
ay= ayf
P = a1 ,1 = SN o
Biz = JuihiNe OV
Baz = GasAAS o\
50 that AN
| = AP I Gaolisr — Garlse) AN\ H579)
Thus _ A
R p }ﬂ)\ﬂhahr W
K = aprrA1NeALte ) (580
}\?hg)\i)\;(gaug&r - 9«@' a; )

We are now in & position to prove chdr’s theorem, If at each
point of a Riemanpian space, K isindependent of the orientation
(A% 25, K ig constant through;jﬁt'the gpace.

Tt follows at once if K igindependent of A, Az, that

&
Roggry= K(gaoler = Garlfse)

and so LAY
Z‘Egﬂﬂ,p = K,g(gaagﬂr - ga'rgﬁﬂ)

P \'x Bopper = K:f(gmlgﬁﬁ - gwgﬁn)
AN Bogrse = K o(garttn — gangﬂr)

i"\‘. . B
Adding{and using Bianchi’s identity, (543), we have

Kw(’;;;gﬁr — gmg,s,) + K (goxlter — gwgﬁp) + K o(Garlie — Gouslar)
~O g
\ }

Multiplying the above equation by ¢
K J(ngss — go) + Kog2e — ngae) + Ko

es gnd summing, we have

— K.gsr = 0

or
(n — 2)gng,ﬁ. =(n— DK s

and gﬂ'rK.p — gﬂ.ﬂK"f} ﬁria‘;—K..ﬂ = ﬁf‘K.,, fn> 2. Forn = 2 there

is no arbitrary orientation.
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If we choose ¢ =7 7 g, K, = 0. This is true for all sinoe 4
can be chosen arbifrarily from 1 to n. Hence K = nonstant
throughout 2all of space. Such a space is said to be of constant
curvature.

+

Problems |
1. Derive (571). .
2. Derive (575). ' N\
3. Derive {578).
4. For a V5 for which gy = 0, 7 = j, show that if A, 1 5. ‘zm
unequal, Q
R,‘j = i’ Rm, \ ‘
GM . ~'\\’

. 1
B = — Rm + - Rh;fg‘h
#H 7 ;
R — R{ﬁi..:\\
sgm Gallii O
Q) IaR
5. If R = ¢='Ry;, show that R‘e =
2 6:1:‘
6. If Ry = kgi; (an Emstem gpa,ce), show that B = g"R; = nk,
or Ry = (B/n)gs;.
7. Show that a spaqe:’g& constant curvature K is an Hinsteln
space and that ® ="En(l — n).
140. Lagrange’s “Equations. Let L be any scalar invariant
function of the cﬁordmates q', 4% . . ., g% their time deriva-
tives ¢, ¢2 X \~ » 9%, and the time £:

\”’ L = L(gj Q; t) = Z(giy q:ij t)

O . .
If vysperform & transformation of coordinates,
)~ ¢ =@ e .o

dge

o = 1, 2, ...,n, then ¢= = pyr &, so that ¢= is a function of
g

the ¢, . Now
3L _ 9L 8¢~ | 8L 3¢*
07 " a7 | ag 0
_ 9Loge | oL o
3g° 9 | 0= 3" o

g (581)
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where ws consider & and q as i ; :
whe 7 q as independent variablesin L, Now

o 8¢ 9¢  o¢eoF

ﬁ(aé) :ee:ﬁ(ag) o ve
a\og) o7 & \eq) T apapor (682)

Subtraciing (581) from (582), we obtain

80 that

(aL oL _ aq [d(aL) aL] O\
dt o di\age/ oo N

N
G

., d{ oL aL
whicl: shows th 2y =
ws that the = (ag'“) " are the io;\nponents of &

covariani vector.
Tor a system of pa,rticles fet L = T =Y Where T is the

kinetie ds:
inetic energy; T E 2%( ) E 2%9’«#?3. 8

V(l:}; I‘J:) :"'”is x“.’.;ﬁxé:'xg; . :‘n)
is the potential functiori, P (F’) Then
\
Ko
d (SL) 8l \} 2 ag 2
=)= £+ =
di T ax: 5 dt (magarxa) 2 5 + 6x‘
\ = MLy — (F’)., f fup = Gat
e snd Newtonian

and "Q;Ea (F), =0 for a Euchdean spac

me 0hrm1cs Hence d (6L) &L vanishes in alk goordinate

Qo dt Fe4
ystem of coordinates ¢',

, ¢* which completely speclfy the configuration of the

83 Stem of particles, and Lagrange’s equations of motion are
- —
E(EE)'_ g r=1,. . O
o/ oF

g particle has the

ical goordinates, &
et } go that

Example 150. In sph
2 _|_r232+rism’9¢,

square of the velocity ¥* =

N
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L-T-V =%(7’*2+r292+'r231n26¢2) -V

19 i)
oL _ m(rd? + r gin? 8 %) — v
or ar

E(%)_ ;
A A

and one of Lagrange’s equations of motion is

N
v o
mf — m(rf? + rsin? 8 62 + — = 0 <\
ar NN
~ N

av
Since — o represents the radial force, the quant&t‘y
T
. \Y
f — (r6* 4 7 gin? 9 ?) S,
\,
must be the radial acceleration.
If no potential function exists, we can\modlfy Lagrange's equa-
tions as follows: We know tlmt = (m;’2)gaﬁx“m3 i a scalar
invariant, so that ,,’v:.

0, = i )—‘3—"’3 (584)

dt gzt dx”
¥ 4 \\

are the componenﬁk\of a covariant vector. In eartesian coordi-
nates, the @, aréd the components of the Newtonian foree, so that
0. is the generhhzed foree vector. 1If f, are the components of the

force vcctm\m a gyl « + + <y coordinate system, then
‘ \\“' 3
O . Q, = f. 3yr
Y 2
d
'"‘?5“
AV

oy
rdr:am r=f, a
Qrde’ = furdor = fody

is a sealar invariant. The reader will immediately realize that
Jo dy* represents the differential of work, d¥, so that

W

= Fx_“ (58-‘0)
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We obtain €; by allowing z* to vary, keeping @', 2%, . . ., 27},
pitt L., o fixed, caleulate the work AW; done by the forces,
and compute .

. AW, ]
Q; = lim —;.- i not summed

Ezample 151, A particle slides in a frictioniess tube which
rotates in a horizontal plane with constant angular speed .
The only horizontal force is the reaction E of the tube on the .
particle. Wehave T = (m/2) (7% + r*6%), so that (584) becomes \

(\A
mi — mrd® = G O
g;(mﬁ@) =@ “ {586)
."“'\\.
with @ =0, & = E%?j = rR. The 'sgytion to (586) is

W

dr .
r = Aewt + Bet, R = 2mw :i_t-’ ginegdh= w-

Prgﬁiéms
1. A particle slides iz 2 Hictionless tube which rotates i &
vertical plane with corBtant angular speed w. Seb up the equa-

3

tions of motion. ¢{W .
2. Tor a rigith }R}T with one point fixed,

PN R VICE 30}

x\"’ — Q’P = 0, then

Using\Ej}ierian angles, show that if Qv
N\

\ ClgFoosdd) =E

oY Afsint 6+ Beos? =

\"w‘ Aﬁ—-AVsinGcosB-I-RybsmS:Qa
ration.

where R, S are constants of integ oT
3. Tf T = aasldh - - - , ¢, ghow tha.t.2'l" = é-&-aq“.

aL(g, @ d ing we can solve for
fin o ey anl assuming
b Do B od H iltonian
(q" P P j, show that the bam
'jr:ijQ:---'gn! Lo o-ov ¢ 2 ERT
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H defined by H# = p.4* — L sutisfies
H =T+ TV =k (a constant)

where V =V{g, ... ,¢%), T =aulg, ... ,qV¢E Also
show that
of _
= —?]r
oq"
O\
oH .
ap.  ° )

N
These are Hamilton’s equations of motion; the p, asd) ealled tho
generalizedl momentum coordinates. Show thatythey are the

components of a covariant vector. ."'g\\’

5. By extremalizing the integral ﬁ :IL 28 ¥ 1) df, show that
FLagrange's equations result. O

6. If the action integral ,\

B ’:. N/
T [(?g AV )gus

@_Q] \
dh dx

is extremalized, show that the result vields

N
\foT
di

g\ a7 av
GG -Z-

o dz”
where T+ A<k, the constant of energy. The path of the
particle ig\x@hé'same a8 the geodesic of a space having the metric

»

O ds® = 2M(h — V)gap do= dxf

»\141 Einstein’s Law of Gravitation. We look for a law of

Nmotion, which will be independent of the coordinate system used,
deseribing the gravitational field of a single particle. In the
special theory of relativity, the line element for the gpace-time
coordinates is given by

N

ds® = —dx? — dy? — dp? 4 ez gp
= —dr? — r246% — 12 5in? @ dp? & ¢? di? (587)

In the space of =, y, 2, ¢, the fas Are constants and the space is
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flat (Euclidean), so that B, = 0. For a gravitating particle
we postulate that the Ricei tensor R;; vanish (see Probs. 5 and 6
of this section). Since Ry; = E;;, a four-dimensional space yields
n(n -+ 13/2 = 10 equations involving the g; and their deriva-
tives. From Prob. 7, Sec. 134, we have R, ; g‘—@, where
E} = g@Rq;, B = g#R.z, and for j = 1, 2, 8, 4 the 10 equations
are essentially reduced to 6 equations. A
We sssume the line element (due to Schwarzchild) to be of
the form _ _ - \
‘\
ds? = —r® (r? — 2 d6% — r®gin? 0 dp? + e’(') ﬁtz " (588)

so that our space is non-Euclidean. We do npt\mclude terms
of the form dr df, ete., because we expect out space to be homo-

meneous and isotropic. We have N
g.ll = —gh goz = —7Y gas N \r” sm“ 8 fu = ¢
and _ ‘:.’:;
gt = —e, g = g0 = —(Psin? 67
*4"‘6_“' g‘*':f:{]’ 1;-53

: 1 agku 39’5;&) . i
Y == — 22, and since g< =0 for
Now ik 2 g&(ax” Py ]

xt\'“:. T + Bgxs _ i‘(’."—”f) { not summed
NV =9 \opr T oy 0x

.s'\
I{fi{ %, & are different, then I = 0. We also see that

N
%
\ )

1 . 9
£ _ ok T
TG = 2¢ Y
; « s (590)
Th =30 5ot
£ _1. uﬁgﬁ
rkk = = 2 g 33‘

Applying (590), we have
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6911 1 dx
T o=~ pun
1 2 g ar  2dr
1 aggz
I\l _ — 11 270 — s A
22 2 or re
1 d )
Ty = — -2—g“ % = —rgin? § e
rhz_l 11%?=1 dv N
2 ar 2 dr \
\\
1 dgae 1 '\,
T = =~g222— == A W {301}
2 ar r N
1 433 15
T8, = ——¢g22 21" = —smﬂq 349
2 a8 \
1 69’33
118 88 = - w\/
59 g ar r \’ >
1 69'33 & ;
I = g™ I — GotT
23 2 g ae .: w
1 8gan™ 1dv
Iw4 — = 44 *Qj»_, =
TV S T2a
and all other I}, vanish™
From (539) (\J
B\ 3
aTg, I“‘: g s
0= - ey - i,
50 that /oo
’\{o
P s 61‘“
Bn & A 5 T e T o+ DL+ T + T4
<\f\'“ + F14 a1 Fu(ru F%z + ng + P?d)
/ _ 1 1 ld2 1 1 1/dy 1 dx
T r2+2dr2+r_2+—+ (dr) T ordr
_1d_1ddr
2r dr 4 dr dr

by making use of (591). Hence Finstein’s law Ry = 0 yields

B 1 d2p 1(dv)2 Ld\dv 1dn
11 = - ==
dr

2 dr2 ddr dr  rdr
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Similarly
1 fdv
ey e-2)--
22 ‘I’ 2?‘ ar ar 1 0
. . B 1 fdv dr .
Rss—sm*Be"[l—l—-é'r(%—E)]—51n26=0 (593)
1d% 1fdv\* 1dride 1ld»
e[ A0 ias4)-
u=¢ sar a\a) Tiwe el
Dividing R by ¢~ and adding to Ry, we obtain Oy
'S
dy  dv ;". d
ar + i 0 '“\ b
or \:»‘\\\'

\ 4

» + » = constant = ¢

#

N

We desire the form of (588), as r — &,%0 approach that of
(587). 'This requires that A and » apprdath zero as r approaches
., Henece A+rv=0 or A= v “From R =0 we have

dy o8t dr ldy
[ — = = g' —_ - —
€ (1 +r d?‘) 1. Let ?i,,wso that & i and
s - ?‘ d
~&t1 +§d_:) ~1
or N\ \\
\Q~ dr &
x:\sn 1 - % ¥
and O
\w
& y=1-2 (594)
any T
{..\:. _

\Where 9m is a constant of integration.
The equations of the geodesics are

A2t i dat dz*

——— — ==

st Ti 35 ds
which yield
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or

@9 | 2drds dqo)2

e T, e, — s d cos e(ds =0 (595)

= df

2’ ds
boundary conditions.

We also obtain ~

ﬁ 1 (ﬁ)z 1 (‘-"’_"")2 1 (dt)z N
. d82 + Pll ds + P33 ds + P‘Zi dS e v

N\

If 9 = = ( initially, then & Eg satisfies (595) and the

KJ/R

or y uf"

@r 1 (@ de\' 1, axfary:
_|_ (T) — et (_(P) +§gr—{m —) = {} {396)

ds* | 2dr \ds ds @ \ds
making use of 8 = =/2. ’x:’\\';
Also _ ,\\
20 dr de N @2 2drde ,
2 i, LY 5 Sor 42T 5 (50
ds? + A ds ds o8O T Gt T rdsds G
d dt dr &5 a%  dvdfdr
28 p oy X5 =+ Z2% _g 5
e N i r i S
O
Integrating (59’[{'\5,113:1 (598), we obtain
Z"\ d
N Pt =h (509)
o dt it ¢
& 1 w — ®»_t
\\§“' 0g - +v=loge or PP (604)

:..\*v;ﬂiere h and ¢ are constants of integration. Equation (588)

Nhecomes
1
d82 = H_dr2_rﬁd¢2+7dt2
Y
or
- )
1= — {22} — a2 ¢
7 \ds " \gs +r ;
or

1 hd?“)z h2 e\2
1=——\5=—) —r= =
'}'(Tzd@ ’ r4+7(7)
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or
E @_ N 2m  2mh?
72 de

and writing # = 1/r, we obtain

duy? e — 1 2
(@) + u? = e +£—1u+2mu3

and differentiating, we finally obtain

~~ ’
AN

ot + u = % + 3mu? ' {601y

2%
<« 3

We obtain an approximate solution of (601) m t:bs Jfollowing
manner: We first neglect the small term 3mu? 2 3m/r2 for large

e
r. The solution of — + u = ny is \'
de® hZ \
\
1 =u =ﬂ[ -]—eco&{q;—w)]
T h?

""
N

where e, w are constants of injoeg'fétion. This is Newton's solu-
tion of planctary motion. We substitute this value of « in the
term 3mu?, and we obtaiQ\

dzu 3

ok + u ';\}——ecos(ga-w)

| B 11 + cos 2(p — o))
N 2hs
\‘

We nov%ﬁéglcct certain terms which yield little to our solution

and @b}a

A d*u - om 6m? _
.\'"\}“' &;2+u=h~2—|——h-4—ecos(ga w)

From the theory of differential equations the solution of our new
equation is

% =;—|i1+ecos (¢ — @) -{-———egoSIn((,o-—w)]
ﬁ 14ecos (o —w— e, approximately

whore ¢ = (3m?/h%)e and € is neglected.
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When the planet moves through one revolution, the advance
of the perihelion is given by 6(w + ¢} = (3m?/h?) S = Grm?/h%
When numerical resulis are given to the constants, it iz found
that the diserepaney between observed and ealculated results on
the advance of the perihelion of Mereury is removed.

Problems
1. Derive (591). N\
2. Derive {593).
3. Tor motion with the speed of light, ds =0, so, thu from

(599), h = c«, and (601) becomes . O
42 ‘..‘(":‘:
(ﬁ; + u = 3mut M'\’\,’ (602)

d2
Integrate — i

obtain an approximate solution of (602) in the form

o

4 u = 0, replace this va{uc of u in 3mu®, and

U =-——+ \}’("(:032 ¢ + 2 sin? ¢)
where R is a constant of imiégrat-ion. Sinceu = 1/r,x = r cos ¢,
% = r sin ¢, show thatl

)
SR G
The term (W'R)’(aﬁ + 2%/ (22 + 32 is the small deviation of the
path of a{ght ray from the straight line z = BE. The asgymptotes
are gmd by taking y large compared with x.  Show that lhey
aref R+ (m/BE)(£2y) and that the angle (in radians)
between the asymptotic lines is approximately 4m/R. This i3

-~ "twwe the predicted value, on the basis of the Newtonian theory,

\V

for the deflection of light as it passes the sun and has been veri-
fied during the fotal eclipse of the sun.

4. ¥ Ry = agy is taken for the Finstein law, show that if
v =e¢, theny =1 — 2m/r) — %or? and

du la
| Y-
e =7 + 3mu 3 % |
5. Assume the following: ds? = gug do® daf, geg = 0 for & # 8,
. die
fos = 1, 2% 0,5 0, o = 1,28 % o1,

dxd ds ds
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1.4
2

= 3§, + constant

#t =2, 22 =y, 2% = 2, 2* =ct. Show that the equations of the
geodesics reduce to Newton’s law of motion & —+ i =0
] de? dx’ ’
i =12 3 '
6. With the assumptions of Prob. 5 show that Ry = 0 yields
Laplace’s equation V& = Q. N\
142. Two-point Tensors. The tensors that we have studied
have_been functions of one point. Let us now considet-the
fu1’.1(3’[.101’18 ¢us(c1, z2) which depend on the coordina’gcé.\of two
points. We now allow independent coordinate tragsfermations
at .the two points Mi(al, 22, o . ., oD, Ma(es, xi"@,, c .., )
If in the new coordinate systems £, Tz We ha¥e’)
s e = g By
=5(T1, o) = GualE &% 5
Fap{ T 2) Fur(Z1s IE)\aff afg (603)

| 3

then the gu.s are the components of & two-point tensor, a covariant
vector relative to M and a g@vatiant vector relative to M.
Indices preceding the comut refer to the point M), indices
following the comma refepdor M I we keep the coordinates of
M, fixed, that is, if Z; \-—T—’ gi, then (603) reduces to
) »
\@.ﬁ(il, #2) = Gus{2r, T2) Q-’f_; (604)
AN 9T
so that relatité to M, das behaves like a covariant vector. A
gimilar rémark applies at the point M.
We.ledve it to the reader to consider the most general type of
t“-'os'ﬁ:nmt tensor fields. We could, indeed, consider a muitiple
@ﬁéor field depending on a finite number of points. What

\difficulties would one encounter for tensors depending on a count-

able collection of points?
‘We may consider a two-point tensor field as special one-point

tensors of & 2n-dimensional space subject to a special group of
coordinate transformations,
The sealar invariant
ds? = ap(ms, 72} 425 do3 {605)

zation of the Riemann line element.

is an immediate generali . !
we obtain the Riemann line

Indeed, when o and 1. coincide,
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element. Assuming ds? > 0 for « £ ¢ £ 3, wo can extremalize

8 da¥ dxy
= H ‘l
f ds j; (ga,g = dﬁ) di (606)

and obtain a system of differential equations.

% + Tha5a] + O ﬂx'lag =0

B4+ I aﬁ:t:"‘a:'g + Oy 4535 =0 (60?)\
where Oy
More . a3 \:}
I“ [ -1 F,a — i ' . Y
af =T g8 of = I g N
3grs  0ge. : (39,4 .\
Ci = =8 O:‘ = Mt ] - ‘.‘:«> _enr 8
g axz 6:1:‘3 ’ - g 8.’5': LJ ax,_l,_ (60 )
) : . drt A\
ni = 8 b= \\

The unique solutions of (606), :ci.(s), 23(s), subject to the
initial conditions :nl(su) = ab, 2h(sa= B, ils)) = of, 7hsw) = 8,
are called dycdesics, or dyopaths

Problems

1. Derive (607). i\

2. Bhow that t-hé@t}‘}'(m 1, T2) are the components of a {wo-point
fensor, a mixed bensor relative to My, and a covariant vector
relative to Mg

3. Show, tl]at the law of transformation for the linear connec-

tion I‘:K' G
AN .
L\ _ d a Daabh =t
R\ Tty (5, 30) = T (2, 3 51 :L1 8’51 oy 01

\\ a7 07 9z° | A1° 97 oo
) 3

4. Show that T%; =T%, if and only if g.p5 = g‘pf: where
es(Ti, £2) is a scalar relative to M, and a eovariant vector rela-
tive to M,. If also Tvip = I b 8hOW that of necessity

9%y
dx7 0

Oup =

where ¢ is a sealar relative to both M, and M,
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b. If
dst = —edr, dro — ryrger tder dps + e dly s
. [1 _ mM? l] [1 miM 1
(m 4+ M)ry (m+M)2r_2]
M
()63
T Tz N\
g = gle—y N
Oy
ghow that the two-point tensors ;\"\\ “
« \7
3C%,  ATS,
Pog = 28 " Crg — CTaTEN
dx] axz "\\'\, '
o _80G, 804, AL,
Tos = =2 — —=2F 4 Cf T3, LTS,
P a2 ol ;5
vanish identically (m, M are constam:\j BShow that the dyo-
desics satisfy QO
doa DS
rlf%:£'= hes
Y
..<1‘1'a"2 C;:'z = hg_""
©O di
\\ = = Cier
 { \s ds
t“’:"'
NV @ = (e
'\ N ds
\v Mm M
1+ Ex 1 M)
[+ (/M1 ]~ [+ (m/M))]
N
ad + 3My [ (m + A‘J)?

N
\/
providéd that Mrs = mry, v = 1/ry, by = (M/m)h. Form KM,

d% M o
Mm/h? <« 1, we have 7 +v= i 4 3Afv*, the Einstein solu-
i

tion for the motion of an infinitesimal particle moving in the field
of a point gravitational mass M.
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A Cauchy's eriterion for sequences, 47
Canchy's inequality, 13
Acceleration, angular, 186 Center of mass, 194
cemf-rll.mtal, 30-31, 184 Centripetal acceleration, 30-31, 184
Coriolis, 210-211 Ceva's theorem, 8 ) \\\
linear, 30, 184, 210-211 Characteristic curves, (69 AN
Action infegral, 328 Charges, 127 « N
~ Addition, of tensors, 275 moving, 146 N
of vectors, 2 Christoffel symbols, 2802303
Angular momentum, 196-200 law of transform'a’ei?)n\of, 200-201
Angular velocity, 22 Circulation, 238 y
Are length, 71, 100 Closed interyal, 89
Archimedean ordering postulate, 92 Closed set A0
Ares, 98 Commupaﬁvé‘ law of wvector addi-
rectifiable, 98, 100 tidn 8
regular, 98 Complement of & set, 90
Arithmetic n-space, 268-269 . Components of a tensor, 274
Associated vector, 281 &\Components of & vector, 8, 270-271
Associative law of vector addition, 3% Conductivity, 162
Asymptotic directions, 81 & Conduetor, 128
Asymptotic lines, 81 & field in neighborhood of, 13131
Average curvature, 78 ¢ { \J foree on the surface of, 131
' \\ Conformal space, 204
B. ) Conjugate directions, 80
V7 Conjugate functions, 122, 143
Bernoulli’s the&ircﬁl, 234235 Connected region, 102-103
Bianchi’s idenftity, 308 Conservation of electric charge, 162
Binormal)\Jg, 312 Conservative field, 103

Continuity, 95

equation of, 231-232

uniform, D5
Contraction of a tensor, 275-276
Contravariant tensor, 274275
Contravariant vector, 270-272
C Coordinate curves, 52
Coordinate system, 9, 269

Caloulus of variations, 83-86 Coordinates, geodesic, 303-303
Riemannian, 305

Cartesisn coordinate system, 280, .
transiormation of, 268

202 )
Caughy-Riemann equations, 122 Coriolis acceleration, 210-211
341

Biot-Sawart law, 163
Bqu{td}aﬁry point, 90
#Boundary of a set, 91

\Béu-nded set, 89
Boundcd variation, 99
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Couple, 197
Covariant, diffcrentiation, 295296
generalized differentiation of, 318~
319
Covariant tensor, 274275
Covariant vector, 273
Curl, 45, 55, 297, 300
of a gradient, 46, 297
Currents, displacement, 168
eleetric, 161-162
Curvature, average, 78
of & curve, B8, 311
Gaussian, 78, 322
lines of, V8
Ricmannian, 307, 320-323
tensor, 306-307
Curve (see Bpace curve)
Curvilinear coordinates, 50, 70
curl, divergence, gradient, Lapla-
cian in, B4-H5

D

Del (v, 40 OGN
Deflection of light, 334
Deformation tensor, 246
Desargues's theorem, 7 )
Derivative, c-ovarian\,:gﬁ5—296

Intrinsie, 207-24%

of a vector, 20,
Determinants, 563 267

cofactom}:af 264

deri ‘El\ve of, 266

mdlti hcatlon of, 264
Dévklopable surlaces, 70
:Dxamctcr of a set, 93
;chleotncs, 135136
Differentiation, covariant, 205-296

meneralised covaria.nt., 318-319

rules, 32

of vectors, 29
Dvipole, 157-158

energy of, 158

field of, 158

magnetie, 160-161

moment of, 157

potential of, 157
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Direction eosincs, 13
Directional derivative, 38, 207
Discontinuitics of D and E,
139
Displacement eurrent, 168
Displaccment vector, 138
Distributive law, 3, 11, 21
Divergence, 42, 54, 120, 297-208
of a curl, 46

185~

of a gradient, 44 Q)
Divergence theorerm of Cauag, Yl4-
120, 209 (\)

Dot or scalar, product, 1B
Dynamlcs of a particls, 30
X
Dynamics of a Sjﬁ:;t()lll of particles,
194 &4
Dyodesics, 836 )
oY F

PAL
W

]ﬂgdg’é of regression, 69-70

. Bingtcin, Albert, law of gravitation,
CoARN T 328320
I’ Alembertian, 178 N

space, 324
special theory of relativily, 283
256
summation notation, 239
Einstein-Lorentz transformations,
283
Flectric field, 127
discontinuity of, 138
polarizalion of, 138- 159
Elcetromagnatic wave
170-173
TFlectrostatic dipoles, 157-158
Tlectrosiatic encrgy, 136--188
Elactrostatic feld, 127
Eleetrosiatic flux, 128
Flectrostatic forees, 127
Tlectrostatic intensity, 127
Eleetrostatic polarization, 158
Elcetrostatic potential, 128
Electrostatic unit of charge, 127
Electrostatics, Gauss's law of, 128
Creen's reciprocity theorem of,
139-140
Ellipsoid of inertia, 226
of strain, 245

equations,
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Energy, equation for a fluid, 235-236
of eleetromagnetic field, 175
of electrostatic field, 136-138
kinetie, 201
Euvelopes, 69
Iquation, of continuity, 231-232
of gauge invariance, 177
of motlon for a fuid, 233-236,
302-303
Fquipotential surfaces, 129
Euclidean space, 8, 279, 308-309
Euler's angular coordinates, 219-221
eguation of motion, for a fluid, 233,
302-303
for a rigid body, 216-217
Euler-Lagrange equation, 85
Evolutes, 66

F

Faraday’s law of induction, 167
Ficld, 9

conservative vector, 103

nonhconservative vector, 104

solenoidal vector, 117

steady, 9 ¢

uniform, 10 NN
Fluid, 230 : s

general motion of, 236 238\
Force moment, 196 “
Foucault pendulum, 2 15
Frenet-Serrct formulas, 60, 311-312
Functlons of bomde& variation, 99—

comugatev]}é
condi \@us 95
pleperties of, 96

hm:momc, 123
mEundamental forma, first, 71

\ J second, 74-75

Tundamental planes, 6263
normal, 62
osculating, 62
rectifying, 63

G

Gauge invariance, 177
Gauss, curvature, 78, 322

343

Gauss, divergence theorem of, 114~
120
electrostatic law of, 128
Generalized foree vector, 326
momentumn, 328
Geodesic coordinates, 303-305
Geodesics, 83, 288-289
minimal, 204
Gradient, 36, 120, 273, 207

Gravitation, Einstein’s law of, 328 e

329
Newton's law of, 190
Green's Tormula, 118, 299-300
Creen’s reciprocity thmrom, 139~
140
Gyroscope, motion of ‘2?2—225

S
H)

.\\

Hamilton'y eq\na.tmns of motion, 328

Harmom\mnjugates, 123
fungctigns, 123, 143

Heine-Borel theorem, 94

Heliz, 60
_woHooke's law, 249
* Hypersurfaces, 282

I

Images, method of, 141-143
Inductien, law of, 167
Inertia, moment of, 216
product of, 216
tensor, 225-228
Inertial frame, 211
Inferaum, 92
Inhomogeneous wave equation, 177
golution of, 178-182
Insulator, 125
Integral, line, 101, 103-105
Riemann, 101
Integrating factor, 111
Integration, of Laplace’s equation,
145
of Poisson’s equation, 155
Interior point, 80
Interval, closed, BY
open, 89
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Intrinsic equations of a curve, 63
Invariant, 271

Involutes, 64

Irrotational motion, 232
Irrotational vectors, 107, 3111

J

Jacobian, 49, 265
Jordan eurves, 98

K

Kelvin's theorem, 239

Kepler's laws of planetary motion,
191-1493

Kinemafics, of a particle, 184

of a rigid body, 204-207

Kinetie energy, 201

Kirekhofl’s solution of the inhomo-
geneolls wave equation, 178-182

Kronecker delta, 260262

<N

L L\

Lagrange’s equations, 824-327%"
Laplace's equation, 125
intogration of, 145 s\
golution in spherio\a&‘coordinates,
146-149 N
unigueness thagrein_ 119
Laplacian, 430268-209
in cylind,ri{ia{f eoordinates, 55
in sphétidal coordinates, 56, 269
Law duction, 167
of;fefract-ion, 139
Twigendre polynomials, 148149

"Nhegendre's equation, 148

Limit point, 90
Line, of curvature, 78
clement, 279
of Schwarzehild, 329
of foree, 132
integral, 101, 103-105
Linear function, 3
set, 89
Liguids, general motion of, 233234
Lorentz's clectron theory, 175-177
transformations, 61, 283
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M

Magnetic dipole, 160-161
effect of currents, 162-164
Magnetostatics, 160
Maas of a particle, 189, 285
Maxwell's equations, 167-169
for a homogeneouzs conducting
medium, 173 A
golution of, 169-173
Menelang’ theorem, 8 p \:\
Meusnier’s theorom, 75 a0
Minkowski force, 285 ¢ ™
Morment of nertia, 216,
Momentum, 196, :
angular, 196200
generalizedy 328
relativeabgular, 199-200
Motion} ‘m a plane, 33
ﬁroﬁtional, 234
(relitive, 187188
sleady, 234
vortex, 238239
Moving charges, 161-162
Mutual induction of two eireuits,
165-166

N

Navier-Stokes equation, 255-257
Neighborhood, 80
Newton's law of gravitation, 190
Newton's law of motion, 183, 211
Nonecongervative ficld, 104
Normal acccleration, 184

plane, 62

to a space curve, b8, 811

to a surface, 73, 102
Number triples, 15, 268-269

0

Oersted, magnetic effect of currents,
162-165

Ohm’s law, 162

Open interval, 89

Open =et, 90

Orthogonal {ransformation 202-293

Oseculating plane, 62
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P

Parallel displacement, 313-31%
Parallelism in a subspace, 315-317
Parametric lines or curves, 71
Particle, acceleration of, 30, 210

angular momentum of, 196

dynamics of, 189

kinematies of, 184

mass of, 189, 285

momentum of, 196

Newton's laws of motion for, 188,

211

rotation of, 22

velocity of, 30, 184, 209
Particles, system of, 194
Perihelion of Mereury, 334
Permeabilify, 160
Planetary motion, 190-193
Foint, 89

houndary, 90

interior, 90

Limit, 0

neighberhood of, 90

set theory, 89 «y
Poisson’s equation, 132-134 ™~

integration of, 155 \‘

Poigson’s ralio, 240 )

Polarization, 158-150\,

Potential, of & dipele, 157
clectrostatic, 128"
vector, 117(" N

veloeity, /282"
- Power, é‘
Poynfing’s theorem, 174-175

Poymting's vector, 175
Pressure, 230

PN

\ \Principal directions, 77-78
Q

Quadratic differcntisl form, 280
(Quotient law of tensors, 276

R

Radius of curvature, 24 o

Recapitulation of differentiation
formulas, 48 -

Reciprocal tensors, 281

«)

Rectifying plane, 63

Refraction, law of, 130

Regions, connected, 102
simply connected, 102-103

Regular ares, 98

Relative motion, 187-188

time rate of change of vectors, 208
Resistance, eleetrie, 162
Retarded potentials, 178-182
Ricci tensor, 307
Riemann integral, 101
Riemannian, coordinatea, 305,

curvature, 307, 320-323 ™

metric, 280 N

space, 280 4
geodesica in/288-289
hypersurfudehin, 282

Riemann-Chrisiofiel tensor, 307-308
Rigid bodigh 203

matiowof, 215-225

O g

: Scalar, 1

curvature, 307
gradicnt of, 36, 273, 207
Laplacian of, 45, 208-299

product of veetors, 10, 273-274
Schur's theorem, 323-324
Schwarzehild line element, 320
Secand fundwmental form, 74-75

geometrical significance, 75

Bequence, 97 )
Cauchy eriterion for convergence

of, 97

Set, 89

bounded, 8%

cloged, 91

complement of, 90

countable, 93

diameter of, 93

infemum of, 92

limit point of, 90

linear, 8%

open, 90

supremum of, 81

theorem of nested, 93
Simply connected region, 102
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Sink, 231 Tensor, eomponents of, 274
Bolenoidal veetor, 117 contraction of, 275-276
Solid angle, 160 contravariant, 274-275
Souree, 231 covariant, 274-275
Space, conformal, 204 curvature, 306-307
Space curve, 31 deformation, 246
are length of, 100-101 inertia, 225228
curvature of, 58, 311 mixed, 275
intrinsic cquations of, 63 Ricei, 307 A
Jordan, 98 Riemann-Chriatoffel, 307 308
on a surface, 72 gtrain, 243-246 p \”\
radius of curvature of, 58 stress, 246-248 0
tangent to, 31, 58, 311 two-point, 335 \ »
torsion of, 59, 312 weight of, 2{5 4
unit binormal of, 59, 812 Tensors, 274,—278
unit principal normal of, 38, 311 a,bsolute~§\5
Space of n-dimensions, 268-269 addibign of 275
Special theory of relativity, 283-286 ctosg.’product of, 278
Spherical coordinates, 35, 50 du%r product of, 278
indicatrix, 68 “product of, 275
Bteady ficld, 9 N\Y quotient law of, 276
Stokes’s theorem, 107-112, 300*301 " reeiproeal, 281
Strain, ellipeoid, 245 oA relative, 275
temsor, 243-246 O . Theorem, of Ceva, 8
St.rea,mline, 234 N\ of Desargue, 7
Stress tensor, 246-248.0 of Menelaus, 8
Bubtraction of vectprend Top, motion of, 222-225
Summation congention, 259 Terque, 196-200
Superscripts, 44, 259 Torsion of a space curve, 59, 312
Bupremum, $102 Transformation of coordinatcs, 269
Surface, P0¢/ Trihedral, 5% '
are lenpth on, 71 Triple scalar product, 23
{?ﬁ;fptotic curves on, 81 * Triple vector product, 24
afage curvature of, 78 ’ Two-point tensors, 335
\Nconjugate directions on, 80
" curves on, 72 . U
developable, T0 . L. .
first fundamental form of, 71 Uniform continuity, 93

Uniform veetor field, 18
geodescis of, 83 En:}qu;ness theorems, 119
normal to, 73, 109 nit charge, 127
principal directions on, 77 v
second fundamental form of, 74

Gauss curvaiure of, 78

Vector, associated, 281

T basis, 3, &
center of mass, 194
Tangent fo a space curve, 31, 53, 311 componcnts of, 89

Tangential acceleration, 184 conservative field, 103
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Vector, contravariant, 270-272
covariant, 273
curl of, 45, 55, 207, 300
definition of, 1
differentiation of, 29
digplacement, 136
divergenee of, 42, 54, 120, 207-298
ficld, 9
#rrotational, 107, 111
length of, 1, 281
operator del (v}, 40
physical comnponents of, 272
potential, 117
solencidal, 117
space, 208-269
gum of a solenoidal and an irrota-

tional vector, 156-157

unit, 1, 281
#ero, 1

Vectors, addition of, 2, 275
angle between two, 10, 281282
differentiation of, 29
equality of, 1
fundamental unit, 8
linear combination of, 3
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Vectors, parallel, 2, 314
parallel displacement of, 313-31i5
sealar, or dot, produet of, 10, 273~
274
subtraction of, 3
triple sealar product of, 23-24
triple vector produet of, 24-25
vector, or cross, product of, 20-23
Velocity, angular, 22-23 I\
linear, 30, 184, 209
potential, 232 QO
Vortex motion, 23823 N\
N/

W ,

Waves, equationof, 70
inhomogendehs‘equation of, 177
longitudinaly 253-254
transvefst; 172, 253

Weie }Bs-Bolmno theorem, 92

Work, 103, 202
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) Young's modulus, 249
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